

THYRO-POWER MANAGER

ZUSATZGERÄT ZUR STATISCHEN NETZLASTZOPTIMIERUNG

Statische Netzlastoptimierung für eine homogene Summenstromaufnahme mit parallel geschalteten Leistungsstellern

Der Thyro-Power Manager (TPM) ist ein Zusatzgerät zur statische Netzlastoptimierung, welches die homogene Summenstromaufnahme Mehrfachstelleranwendungenvon bis zu 10 Leistungsstellern in der Betriebsart Vollschwingungstakt (TAKT) steigert. Daneben dient es u.a. zur Netzlastspitzenüberwachung, Messwerterfassung und -überwachung und als E/A Baugruppe.

Mit dem Verfahren der statischen Netzlastoptimierung trägt der Thyro-Power Manager durch eine optimale Verteilung der parallel arbeitenden Thyro-S®, Thyro-A®, Thyro-AX® und Thyro-PX® Leistungssteller zu einer Signifikanten Verbesserung der Netzbelastung bei. Die einzelnen Leistungssteller werden hierbei hintereinander versetzt ein- und wieder ausgeschaltet, womit sich eine weitestgehend homogene Summenstromaufnahme über die Zeit ergibt.

Merkmale

- Statische Netzlastoptimierung (automatisch/ manuell)
- 10 potenzialfreie Anschlüsse für Thyristor Leistungssteller
- > Spannungsversorgung 110 V/230 V; 50/60 Hz
- > Einfache Bedienung (Schalter und Potentiometer)
- > Konfigurationsmöglichkeit über PC-Programm
- > Fehler- und Alarmausgang
- > RS232 PC-Anschluss
- > Ankopplungsmöglichkeit an Feldbusebene.1
- > Ersatz für drei bisherige ZME-Baugruppen
- > Ersatz für bisherige SYT9-Baugruppe
- › Geräteschutz durch integrierte Sicherung
- > Einfache Installation via Hutschienenmontage

Applikationen

- › Glasbiegeöfen
- > Anlagen für die Flachglasherstellung
- > Rohrbegleitheizungen
- > Ofenbau
- > Maschinenbau

EINFACHE STEUERUNG UND INTEGRATION

Parameter können sowohl lokal über Drehschalter und Potentiometer, als auch menügeführt über eine PC-Software verändert werden. Über die integrierte RS232 Schnittstelle und optionale Busmodule lässt sich der Thyro-Power Manager einfach an die Prozess- und Automatisierungstechnik ankoppeln.¹

Zur statischen Netzlastoptimierung, kann je nach Anwendungsfall zwischen den Betriebsarten automatischer oder manueller statischer Netzlastverteilung gewählt werden. Eine Stromwertoder Netzlastspitzenüberwachung lässt sich auf einfache Weise über die drei geräteeigenen, parametrierbaren Wandlereingänge realisieren.

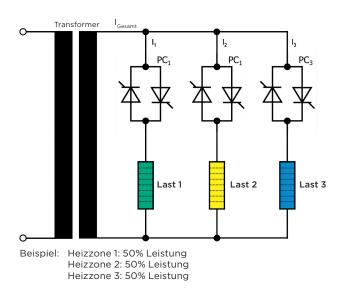


Abb. 1. Schematische Darstellung für drei Heizzonen

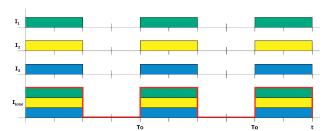


Abb. 2. Ohne Netzlastoptimierung (ungünstigster Fall)

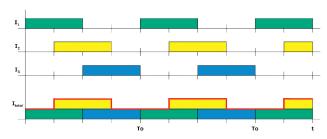
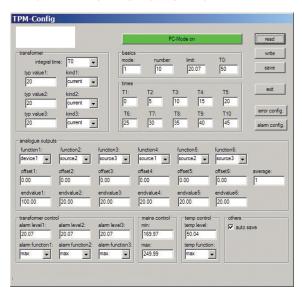


Abb 3. Statische Netzlastoptimierung mit Thyro-Power Manager

SONDERFUNKTIONEN/BETRIEBSARTEN

Automatikbetrieb: Die Taktperiodendauer T_o (1s) wird automatisch und gleichmäßig auf die Anzahl der angeschlossenen Steller/Gruppen aufgeteilt. Hierdurch wird eine ungünstige Stromverteilung vermieden und der gesamte Zeitbereich ausgenutzt.

Manuelller Betrieb: Die Taktperiodendauer T_0 (1s) kann manuell auf die Anzahl der angeschlossenen Steller/Gruppen aufgeteilt werden. Dies ist immer dann sinnvoll, wenn einige Steller/Gruppen mit hohem Sollwert bzw. langer Einschaltzeit T_s und andere Steller/Gruppen mit kleinem Sollwert bzw. kurzer Einschaltzeit T_s arbeiten.


ZUSÄTZLICHE FUNKTIONEN

- > Stromwert-/Netzlastspitzenwertüberwachung
- Leistungs- und Energiemessung
- Messung von Netzspannung und Temperatur
- › integrierter Betriebsstundenzähler

ZERTIFIKATE

- > Qualitätsstandard nach DIN ISO 9001
- CE-konform
- > RoHS-konform 5/6

BEISPIELRECHNUNG FÜR 10 PARALLEL BETRIEBENE LEISTUNGSSTELLER

Taktperiodendauer T_0 = 50 Netzperioden/Einschaltzeit T_s = 3 Netzperioden Strom eines Leistungsstellers I_0 = 1 A

$$I_{eff} = I_0 * \sqrt{\frac{T_S}{T_0}}$$
 $I_{cff} = 10 * 1A * \sqrt{\frac{3}{50}} = 2,45A$

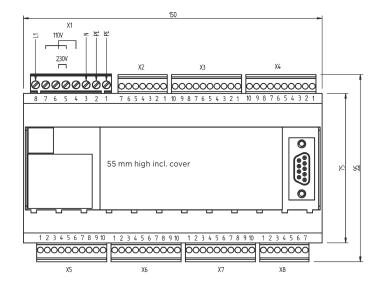
Im günstigsten Fall erreicht die Netzlastoptimierung des TPM die Reduzierung des Gesamtstromes auf den einfachen Stellerstrom (T_s verlängert sich entsprechend)

entsprechend)
$$I_{eff\ (TPM)} = I_0 * \sqrt{\frac{10*T_S}{T_0}} \qquad I_{eff\ (TPM)} = 1A*\sqrt{\frac{30}{50}} = 0,77A$$

Womit der Effektivwert des Stromes ohne Netzlastoptimierung um den Faktor:

$$f = \frac{I_{\it eff}}{I_{\it eff\,(TPM)}} = \underline{3,\!18} \;\; \mbox{h\"oher ausf\"{allt} als unter Verwendung des} \label{eq:feff}$$
 TPM.

Abb 4. Thyro-Power Manager (TPM) Konfiguration



SPEZIFIKATION				
Technische Daten				
Betriebsart	Statische Netzlastoptimierung (10 Kanal)			
Sonderfunktionen	Automatische Netzlastoptimierung			
Sonderrunktionen	Manuelle Netzlastoptimierung			
	Netzlastspitzenüberwachung			
Zusatzfunktionen	Messwerterfassung und -überwachung			
	E/A-Baugruppe			
Nennanschlussspannung X1	AC 230 V -15% bis +10%			
	AC 110 V -15% bis +10%			
Leistungsaufnahme	1,5 W			
Interne Sicherung	T 1 A 250 V			
Netzfrequenz	47 bis 63 Hz			
Digitale Ausgänge X3 und X4	10 galvanisch getrennte Optokopplerausgänge			
	Max. DC 30 V			
	Max. 15 mA			
Fehler- und Alarmausgang X8	2 galvanisch getrennte Optokopplerausgänge Max. DC 30 V			
remer- unu Alaimausyany Ao	Max. 15 mA			
Analoge Ausgänge X7 und X8 (6 analoge Ausgänge)				
Ausgangsbereich	0 bis 10 V			
Max. Strom	1 mA			
Ausgabegenauigkeit	± 1%²			
Analoge DC-Eingänge X5 und X6 (3 analoge	B	Ri		
Eingänge)	Bereich	RI		
Eingänge 1 und 2	0/2 bis 10 V	88 kΩ		
X6.1 und X6.4	0/1 bis 5 V	44 kΩ		
	0/4 bis 20 mA	250 Ω		
Eingang 3	0/1 bis 10 V	88 kΩ		
X5.10				
Analoge AC-Eingänge X5 (3 analoge Eingänge)	Bereich	Ri		
Eingänge 1 und 3	0 bis 1 V~	7540 kΩ		
Messgenauigkeit				
Netzspannung	±3%²			
DC-Eingänge	±1%²			
AC-Eingänge	±2%²			
Meldungen und Anschlüsse				
Statusmeldungen	14 LEDs für Betrieb-, Fehler- und Alarmmeldungen			
PC-Schnittstelle	RS-232			
Busanschluss X2¹	Optional über Busmodule Profibus® DP, Modbus® RTU, DeviceNet™, CANopen®, Profinet®, Modbus® TCP/IP, Ethernet/IP®			
	CAMOPER, Frontier, Moubus TCP/IP, Ethemet/IP			

1 In Vorbereitung

2 Bezogen auf den Endwert

Mechanische Spezifikation	en		
Abmessungen (B x H x T)	150 mm x 95 mm x 60 mm; 5,9" x 3,7" x 2,4"	,	
Gewicht	0,35 kg (0,77 lb)		
Einbaugerät	EN 50 178		
Allgemeine Anforderungen	EN 60146-1-1		
Betriebsbedingungen	EN 60 146-1-1; K. 2.5		
Einsatzort	Industriebereich; CISPR 6		
EN 60 146-1-1; K. 2.2			
Temperatur Verhalten	Lagertemperatur	D	-25 to +55°C
	Transporttemperatur	E	-25 to +70°C
	Betriebstemperatur	(besser B)	-10 to +55°C
Feuchteklasse	В	EN 50 178 Tab. 7 (EN 60 721)	
Verschmutzungsgrad	2	EN 50 178 Tab. 2	
Luftdruck	900 mbar	entspricht max. 1000 m über NN	
Schutzart	IPOO EN 69 529		
Schutzklasse	EN 50 178 Kap. 3		
Mechanischer Stoß	EN 50 178 Kap. 6.2.1		
Prüfung	Gemäß EN 60 146-1-1 4		
EMV-Störaussendung	EN 61000-6-4		
Funkentstörung	Klasse A	EN 55011:3.91 CISPR 11	
EMV-Störfestigkeit	EN 61000-6-2		
ESD	8 kV (A)	EN 61000-4-4	
Burst-Steuerleitungen	1 kV (A) EN 61000	EN 61000-4-6	
Leitungsgebunden	EN 61000-4-6		

