Enhanced arc control with internal load matching for 40 kHz reactive sputtering applications
The **PEII power supply** provides 40 kHz pulse width modulation (PWM). It features advanced arc control and internal load matching with outputs of up to 60 kW when units are combined—requiring no external hardware such as transformers or tuners. The power supply also offers two distinct arc-handling circuits, and the floating output can be grounded on either side.

### Benefits

- High power density
- Wide tap range
- Regulation on power, voltage, or current
- Enhanced arc control
- Automatic process safeguard
- Flexible modularity
- Efficient, compact design

### Applications

- Dual-cathode and other reactive sputtering applications such as Al₂O₃, SiO₂, and diamond-like carbon (DLC) used to create energy-efficient optical and glass coatings
- Dual-cathode PECVD of SiO/ SiO₂ that produce film and plastic coatings for decorative films, food packaging, capacitor films, and other films
- PECVD, DLC, metal oxides, and carbon coatings that provide tool and tribological coatings for cutting tools, surface hardened gears, and other rotating and wear surfaces, as well as for hip joint replacements and lubricating surface treatments

PEII power supplies are water-cooled and deliver tight output regulation on power, voltage, or current, with a measurement accuracy of 1% and low harmonics. They are compatible with a programmable logic controller (PLC) and CE compliant.
HIGH POWER DENSITY
PEII units offer a power factor of > 0.9. Internal load matching enables you to take advantage of the PEII series’ wide tap range without additional hardware and at significant space savings over other types of power supplies.

WIDE TAP RANGE
The PEII power supply’s comprehensive voltage range (307 to 953 VRMS) allows you to operate continuously through nearly a 10:1 impedance range. This wide tap range saves money because you only need to buy the power output that your application actually needs.

CONSTANT REGULATION ON POWER, VOLTAGE, OR CURRENT
Optimize your processes using the best control method for your needs.

The compact PEII series offers 40 kHz with up to 60 kW and two distinct arc-handling circuits.

ENHANCED ARC CONTROL
PEII power supplies offer two distinct arc-handling circuits. Current-arc circuitry handles major process arcs. In addition, voltage-arc circuitry detects and reacts to micro-arcs—substantially reducing the occurrence of major process arcs by pulsing the PEII unit off for a short period. The voltage-arc circuitry detects changes in the output waveform created by a micro-arc within one half-cycle of the output. You can select how sensitive the voltage-arc circuit is to the changes in the output waveform, and you can select the duration of the “off” pulse. Thus, the PEII power supply provides the fastest possible response with the best possible signal-to-noise ratio.

AUTOMATIC PROCESS SAFEGUARD
If a fault occurs, such as a water flow restriction that causes thermal shutdown to a slave unit, the PEII system automatically recognizes the occurrence and redistributes the power output to the working units. This ensures maximum power output to the process and enables you to work through a fault condition to complete the runs you have in process.

FLEXIBLE MODULARITY
With its high power density and wide tap range, the PEII power supply offers designed-in flexibility. Because of their high power density, PEII units are a compact 178 mm (7”) high—which translates into valuable space savings. For comparable power configurations, the PEII unit is up to two-and-a-half times smaller than competing power systems.

BUILT-IN PROTECTION
All PEII power supplies have complete internal protection for over-voltage, over-current, over-power, and open and short circuits. User connections let you add inputs such as vacuum, water, and system interlocks.

CE COMPLIANCE
All PEII power supplies comply with the following CE standards: EN55011 (emissions), EN61000-6-2 (immunity), and EN50178 (safety).

RELIABILITY AND SERVICEABILITY
PEII units are designed to be among the most reliable and highest-quality power supplies available and carry our standard one-year warranty for parts and labor.

The PEII power supply’s automatic process safeguard ensures maximum power output to the process and enables you to work through a fault condition.
ACCESSORIES
AE® offers the following optional accessories to enhance the performance of your PEII power supply.

RAS SPLIT INDUCTOR
AE’s redundant anode sputtering (RAS) split inductor eliminates the disappearing anode problem from single-target reactive sputtering processes, thus enabling such systems to approximate DC sputtering rates. The RAS inductor’s novel design incorporates two anodes and a single cathode, which facilitates retrofitting onto existing systems.

SOLENOID CONTROLLER
Strongly recommended in high-humidity environments, this accessory interrupts coolant flow when the unit is not producing power. This reduces the likelihood of condensation, which can interfere with the power supply’s electronics. User-configurable switches allow you to adjust the delay time from power-off to a water interruption from 30 seconds to 30 minutes.

EXTENDER HOSES FOR STACKING UNITS
Extender hoses, connected before you stack your PEII power supplies, ease installation by extending hard-to-reach water connections behind the units. This makes these connections readily accessible, simplifying set up and maintenance.

LMII 10 K
The LMII product is an external, three-tap step-up transformer that works with the PEII supply’s internal seven-tap transformer to provide seamless load matching and increased flexibility for processes requiring higher operating voltages.

<table>
<thead>
<tr>
<th>Taps</th>
<th>Ratio</th>
<th>Min V Output</th>
<th>Max V Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>614</td>
<td>1906</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>1535</td>
<td>4765</td>
</tr>
<tr>
<td>3</td>
<td>10.0</td>
<td>3070</td>
<td>9530</td>
</tr>
</tbody>
</table>

The PEII power supply supports process performance and cost efficiency by helping to reduce arcing, increase throughput and film quality, and maximize target utilization.
## SPECIFICATIONS

### PHYSICAL

<table>
<thead>
<tr>
<th></th>
<th>5 KW MODEL</th>
<th>10 KW MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>177 mm (H) x 482.6 mm (W) x 495.3 mm (D); 6.97” (H) x 19” (W) x 19.5” (D)</td>
<td>102 mm (4”) required for rear panel connections</td>
</tr>
<tr>
<td>Weight</td>
<td>40.8 kg (90 lb) max</td>
<td></td>
</tr>
</tbody>
</table>

### Connector and Cable Specifications

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Output Connector</td>
<td>Dual output, terminal block with approved safety cover</td>
</tr>
<tr>
<td>RF Voltage and Current Monitors</td>
<td>BNC female</td>
</tr>
<tr>
<td>User Port Connector</td>
<td>25-pin, sub-miniature D, female, with 4-40 jack post</td>
</tr>
<tr>
<td>AC Power Input</td>
<td>Site wired, 4-wire DIN rail (terminal block) with cover</td>
</tr>
<tr>
<td>Input CEX/Drive Connector</td>
<td>50-pin, SCSI 2, female, with 2-56 jack post</td>
</tr>
<tr>
<td>Output CEX/Drive Connector</td>
<td>50-pin, SCSI 2, female, with spring clips</td>
</tr>
<tr>
<td>Coolant Connectors</td>
<td>( \frac{3}{8} )” female NPT</td>
</tr>
</tbody>
</table>

### ELECTRICAL

<table>
<thead>
<tr>
<th></th>
<th>5 KW MODEL</th>
<th>10 KW MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Voltage</td>
<td>180 to 230 VAC (208 VAC nominal); 3φ with ground (no neutral)</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>85% at full-rated output</td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.90 at full-rated output</td>
<td></td>
</tr>
<tr>
<td>Output Frequency</td>
<td>40 kHz ±0.01%</td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td>5 kW and 10 kW models</td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>547 V&lt;sub&gt;RMS&lt;/sub&gt; nominal in tap 4; 953 VRMS max in tap 7</td>
<td></td>
</tr>
<tr>
<td>Output Current</td>
<td>9 A&lt;sub&gt;RMS&lt;/sub&gt; nominal in tap 4; 16 ARMS max in tap 1</td>
<td>18 A&lt;sub&gt;RMS&lt;/sub&gt; nominal in tap 4; 32 A&lt;sub&gt;RMS&lt;/sub&gt; max in tap 1</td>
</tr>
<tr>
<td>Output Load</td>
<td>42 Ω dual floating outputs nominal in tap 4</td>
<td>84 Ω dual floating outputs nominal in tap 4</td>
</tr>
<tr>
<td>Load Match</td>
<td>7 taps, 2:1 impedance range per tap</td>
<td></td>
</tr>
</tbody>
</table>

### Arc Circuitry

<table>
<thead>
<tr>
<th>Arc Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Arc</td>
<td>The minimum output voltage level required for this circuit to become activated is user-selectable at 15%, 29%, 44%, or 58% of full-scale voltage for a given tap. When the half-cycle average drops below a user-selectable trigger level, the circuit pulses power off for a user-selectable time. You can also choose to completely disable this circuit.</td>
</tr>
<tr>
<td>Current Arc</td>
<td>Removes output power for 10 msec when current exceeds 20% above maximum current allowed in a given tap position. Re-application of output power goes through a programmed ramp sequence.</td>
</tr>
</tbody>
</table>

### Regulation Modes

- Power, voltage, and current

### Measurement Accuracy

±1%

### ENVIRONMENTAL

<table>
<thead>
<tr>
<th></th>
<th>5 KW MODEL</th>
<th>10 KW MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>0 to 40°C (32 to 104°F)</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>15% to 85%, non-condensing</td>
<td></td>
</tr>
</tbody>
</table>

### Cooling Requirements

<table>
<thead>
<tr>
<th></th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Medium</td>
<td>Water</td>
</tr>
<tr>
<td>Temperature</td>
<td>5 to 30°C (41 to 86°F) to inlet temperature</td>
</tr>
<tr>
<td>Flow</td>
<td>7.57 lpm (2 gpm) min</td>
</tr>
<tr>
<td>Pressure</td>
<td>6.9 bars (100 psi) max</td>
</tr>
</tbody>
</table>