### AVO100B-48S3V3

### 100 Watts

**Eighth-brick Converter** 

Total Power: 100 Watts
Input Voltage: 36 to 75 Vdc
# of Outputs: Single

### **Special Features**

- Delivers up to 30A output current
- Industry standard eighth brick foot print 57.9mm x 22.9mm x 8.9mm (2.28" x 0.9" x 0.35")
- · No minimum load requirement
- Ultra high efficiency: 92.5%
- Excellent thermal performance
- · High power density
- · Low output noise
- 2:1 wide input voltage of 36V-75V
- Remote control function (negative or positive logic optional)
- Remote sense
- Trim function: +10%/-20%
- · Input under-voltage lockout
- Output over-current protection
- Output over-voltage protection
- · Over-temperature protection
- · RoHS compliant

#### Safety

IEC/EN/UL/CSA 60950 CE Mark UL/TUV



## **Product Descriptions**

The AVO100B-48S3V3 is a single output DC/DC converter with standard eighth-brick form factor and pin configuration. It delivers up to 30A output current with 3.3V output. Ultra-high 92.5% efficiency and excellent thermal performance makes it an ideal choice for small space, high current and low voltage applications and can operate over an ambient temperature range of -40  $^{\circ}$ C  $^{\circ}$  +85  $^{\circ}$ C.

## **Applications**

Telecom/ Datacom



# **Model Numbers**

| Standard            | Output Voltage | Structure  | Remote ON/OFF logic | RoHS Status |
|---------------------|----------------|------------|---------------------|-------------|
| AVO100B-48S3V3-6L   | 3.3Vdc         | Open-frame | Negative            | R6          |
| AVO100B-48S3V3P-6L  | 3.3Vdc         | Open-frame | Positive            | R6          |
| AVO100B-48S3V3-4L   | 3.3Vdc         | Open-frame | Negative            | R6          |
| AVO100B-48S3V3PB-6L | 3.3Vdc         | Baseplate  | Positive            | R6          |
| AVO100B-48S3V3SL    | 3.3Vdc         | Open-frame | Negative            | R6          |

## **Ordering information**

| AVO100B | - | 48 | S | 3V3 | Р   | В | - | 6 | L |
|---------|---|----|---|-----|-----|---|---|---|---|
| 1)      |   | 2  | 3 | 4   | (5) | 6 |   | 7 | 8 |

| 1) | Model series         | AVO: high efficiency eighth brick series, 100B: output power 100W                                    |  |  |
|----|----------------------|------------------------------------------------------------------------------------------------------|--|--|
| 2  | Input voltage        | 48: 36V ~ 75V input range, rated input voltage 48V                                                   |  |  |
| 3  | Output number        | S: single output                                                                                     |  |  |
| 4  | Rated output voltage | 3V3: 3.3V output                                                                                     |  |  |
| 5  | Remote ON/OFF logic  | Default: negative logic; P: positive logic                                                           |  |  |
| 6  | Baseplate            | B: with baseplate; default: open frame                                                               |  |  |
| 7  | Pin length           | Omit for 5.8mm ± 0.25mm<br>4: 4.8mm ± 0.25mm<br>6: 3.8mm ± 0.25mm<br>8: 2.8mm ± 0.25mm<br>S: SMT pin |  |  |
| 8  | RoHS status          | L: RoHS, R6                                                                                          |  |  |

## **Options**

None

# **Electrical Specifications**

### **Absolute Maximum Ratings**

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

| Parameter                                     | Model                      | Symbol           | Min    | Тур | Max       | Unit       |
|-----------------------------------------------|----------------------------|------------------|--------|-----|-----------|------------|
| Input Voltage                                 |                            |                  |        |     |           |            |
| Operating -Continuous<br>Non-operating -100mS | All Modules<br>All Modules | $V_{\rm IN,DC}$  | 0<br>0 | -   | 80<br>100 | Vdc<br>Vdc |
| Maximum Output Power                          | All Modules                | $P_{O,max}$      | 0      | -   | 100       | W          |
| Isolation Voltage <sup>1</sup>                |                            |                  |        |     |           |            |
| Input to outputs                              | All Modules                |                  | 2000   | -   | -         | Vdc        |
| Isolation Resistance                          | All Modules                | R                | 10     |     |           | Mohm       |
| Ambient Operating Temperature                 | All Modules                | T <sub>A</sub>   | -40    | -   | +85       | °С         |
| Storage Temperature                           | All Modules                | T <sub>STG</sub> | -55    | -   | +125      | °С         |
| Voltage at remote ON/OFF pin                  | All Modules                |                  | -0.7   | -   | 12        | Vdc        |
| Humidity (non-condensing)                     |                            |                  |        |     |           |            |
| Operating Non-operating                       | All Modules<br>All Modules |                  | -<br>- | -   | 95<br>95  | %<br>%     |

Note 1 - 1mA for 60s, slew rate of 2000V/10s

## **Input Specifications**

Table 2. Input Specifications:

| Parameter                                                | Conditions                                                | Symbol                  | Min | Тур        | Max | Unit             |
|----------------------------------------------------------|-----------------------------------------------------------|-------------------------|-----|------------|-----|------------------|
| Operating Input Voltage, DC                              | All                                                       | $V_{\rm IN,DC}$         | 36  | 48         | 75  | Vdc              |
| Turn-on Voltage Threshold                                | $I_{O} = I_{O,max}$                                       | $V_{\rm IN,ON}$         | 31  | 33.5       | 36  | Vdc              |
| Turn-off Voltage Threshold                               | $I_{O} = I_{O,max}$                                       | $V_{IN,OFF}$            | 30  | 31.5       | 35  | Vdc              |
| Lockout Voltage Hysteresis                               | $I_{O} = I_{O,max}$                                       |                         | 1   | 2          | 3   | V                |
| Maximum Input Current $(I_O = I_{O,max})$                | $V_{IN,DC} = 36V_{DC}$                                    | I <sub>IN,max</sub>     | -   | 3.05       | 3.5 | А                |
| No Load Input Current $(V_O On, I_O = 0A, I_{VSB} = 0A)$ | $V_{IN,DC} = 36V_{DC}$                                    | I <sub>IN,no_load</sub> | 1   | -          | 0.1 | А                |
| Standby Input Current                                    | $V_{IN,DC} = 36V_{DC}$<br>Remote OFF                      | I <sub>IN,standby</sub> | -   | 0.01       | 0.1 | А                |
| Inrush Current Transient Rating                          |                                                           |                         | -   | 0.5        | 1   | A <sup>2</sup> S |
| Input filter component values (C\L)                      |                                                           |                         | 1   | 2\3        | -   | μF\μH            |
| Recommended Input Fuse                                   | Fast blow external fuse recommended                       |                         | -   | -          | 6.3 | А                |
| Recommended External Input Capacitance                   | Low ESR capacitor recommended                             | C <sub>IN</sub>         | -   | 100        | -   | uF               |
| Input Reflected Ripple Current                           | Through 12uH inductor                                     |                         | -   | 10         | 30  | mAp-p            |
| Operating Efficiency                                     | $T_A=25$ °C<br>$I_O = I_{O,max}$<br>$I_O = 50\%I_{O,max}$ | η                       | -   | 92<br>92.5 | -   | %<br>%           |

## **Output Specifications**

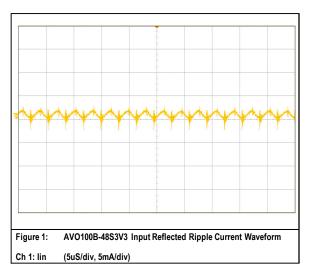
Table 3. Output Specifications:

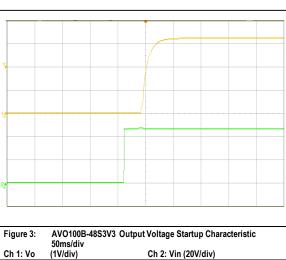
| Parameter                                      |                                 | Condition                                                                                                         | Symbol                            | Min  | Тур       | Max   | Unit                |
|------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|-----------|-------|---------------------|
| Factory Set Voltage                            |                                 | $V_{IN,DC} = 48V_{DC}$ $I_O = I_{O,max}$                                                                          | Vo                                | 3.25 | 3.3       | 3.35  | Vdc                 |
| Total Regulation                               |                                 | Inclusive of line, load<br>temperature change,<br>warm-up drift                                                   | V <sub>O</sub>                    | 3.2  | 3.3       | 3.4   | Vdc                 |
| Output Voltage Line Reg                        | ulation                         | V <sub>IN,min</sub> to V <sub>IN,max</sub>                                                                        | %V <sub>O</sub>                   | -    | 0.1       | 0.24  | %                   |
| Output Voltage Load Re                         | gulation                        | I <sub>O,min</sub> to I <sub>O,max</sub>                                                                          | %V <sub>o</sub>                   | -    | 0.15      | 0.45  | %                   |
| Output Voltage Tempera                         | ture Regulation                 | All                                                                                                               | %V <sub>O</sub>                   | -    | 0.002     | 0.02  | %/°C                |
| Output Voltage Trim Rar                        | nge                             | All                                                                                                               | Vo                                | 2.64 | -         | 3.63  | V                   |
| Output Ripple, pk-pk                           |                                 | Measure with a 1uF<br>ceramic capacitor in<br>parallel with a 10uF<br>tantalum capacitor, 0<br>to 20MHz bandwidth | Vo                                | -    | 40        | 120   | mV <sub>PK-PK</sub> |
| Output Current                                 |                                 | All                                                                                                               | Io                                | 0    | -         | 30    | Α                   |
| Output DC current-limit inception <sup>1</sup> |                                 |                                                                                                                   | Io                                | 33   | -         | 42    | Α                   |
| V <sub>O</sub> Load Capacitance <sup>2</sup>   |                                 | All                                                                                                               | Co                                | 220  | -         | 10000 | uF                  |
| V <sub>O</sub> Dynamic Response                |                                 | 50%~75%~50%<br>25% load change<br>slew rate = 0.1A/us                                                             | ±V <sub>O</sub><br>T <sub>s</sub> |      | 60<br>70  | -     | mV<br>uSec          |
|                                                | Peak Deviation<br>Settling Time | 50%~75%~50%<br>25% load change<br>slew rate = 1A/us                                                               | ±V <sub>O</sub><br>T <sub>s</sub> | -    | 150<br>80 | -     | mV<br>uSec          |
|                                                | Rise time                       | $I_{O} = I_{max}$                                                                                                 | T <sub>rise</sub>                 | -    | 3         | 30    | mS                  |
| Turn-on transient                              | Turn-on delay<br>time           | $I_{O} = I_{max}$                                                                                                 | T <sub>turn-on</sub>              | -    | 5         | 10    | mS                  |
| Tam on transion                                | Output voltage overshoot        | $I_{O} = I_{O,max}$                                                                                               | %V <sub>O</sub>                   | -    | -         | 5     | %                   |
| Switching frequency                            |                                 | All                                                                                                               | f <sub>sw</sub>                   | -    | 310       | -     | KHz                 |
| Remote ON/OFF                                  | Off-state voltage               | All                                                                                                               |                                   | -0.7 | -         | 1.2   | V                   |
| control (positive logic)                       | On-state voltage                | All                                                                                                               |                                   | 3.5  | -         | 12    | V                   |
| Remote ON/OFF                                  | Off-state voltage               | All                                                                                                               |                                   | 3.5  | -         | 12    | V                   |
| control (Negative logic)                       | On-state voltage                | All                                                                                                               |                                   | -0.7 | -         | 1.2   | V                   |

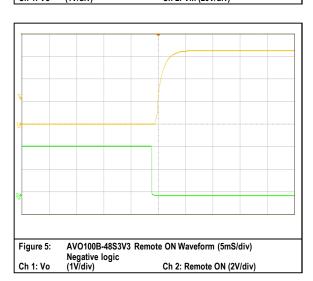
Note 1 - Hiccup: auto-restart when over-current condition is removed.

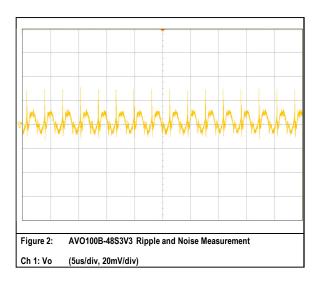
Note 2 - High frequency and low ESR is recommended.

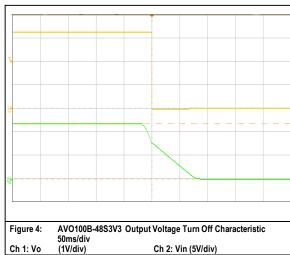
# **Output Specifications**

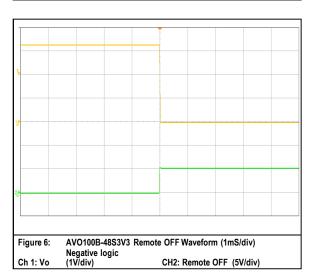

Table 3. Output Specifications, con't:


| Parameter                                       | Condition                                                            | Symbol               | Min  | Тур | Max  | Unit              |
|-------------------------------------------------|----------------------------------------------------------------------|----------------------|------|-----|------|-------------------|
| Output over-voltage protection <sup>3</sup>     | All                                                                  | %V <sub>O, nom</sub> | 115  | 130 | 150  | %                 |
| Output over-temperature protection <sup>4</sup> | All                                                                  | Т                    | 120  | 130 | 140  | οС                |
| Over-temperature hysteresis                     | All                                                                  | Т                    | 5    | 20  | -    | οС                |
| Output voltage remote sense range               | All                                                                  | Vo                   | -    | -   | 0.33 | V                 |
| Calculated MTBF                                 | Telcordia SR-332-<br>2006; 80% load;<br>300LFM, 25 °C T <sub>A</sub> |                      | -    | 2.5 | -    | 10 <sup>6</sup> h |
| Weight                                          |                                                                      |                      | 34.5 |     | 46.5 | g                 |

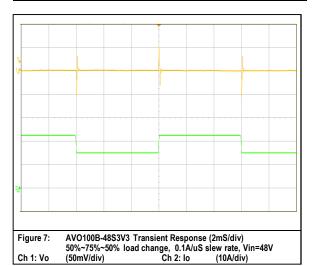

Note 3 - Hiccup: auto-restart when over-voltage condition is removed.

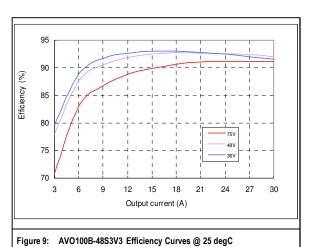

Note 4 - Auto recovery.

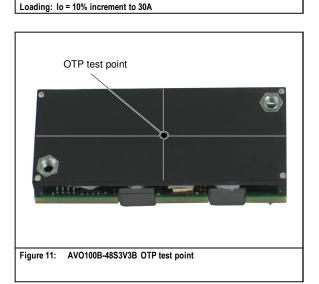

### **AVO100B-48S3V3 Performance Curves**

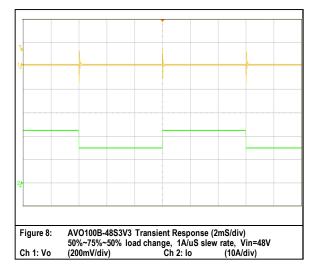


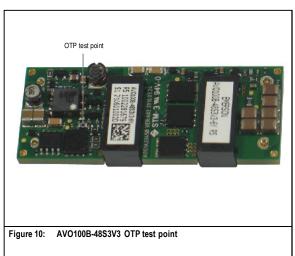


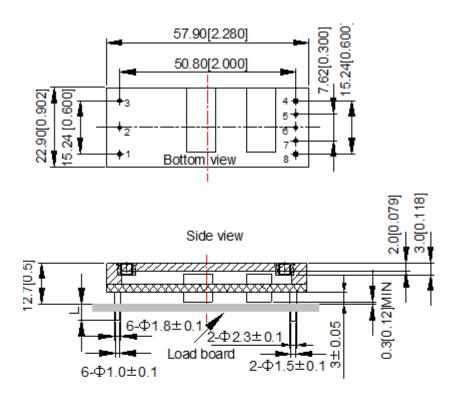



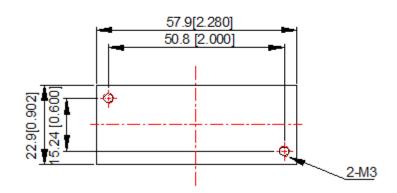





### **AVO100B-48S3V3 Performance Curves**







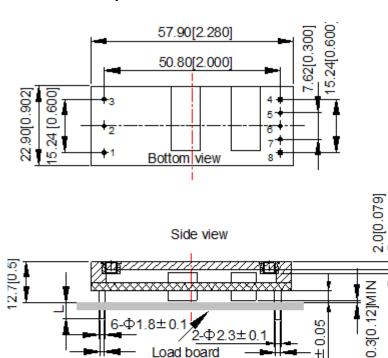



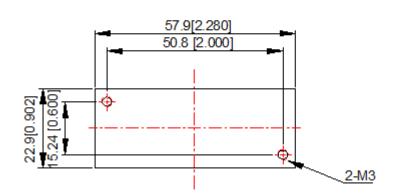



# **Mechanical Specifications**

### **Mechanical Outlines - Open frame**







Unit: mm[inch] Bottom view: pin on upside

Tolerance:  $X.Xmm \pm 0.5mm[X.X in. \pm 0.02in.]$  $X.XXmm \pm 0.25mm[X.XX in. \pm 0.01in.]$ 

# **Mechanical Specifications**

### **Mechanical Outlines - Baseplate**





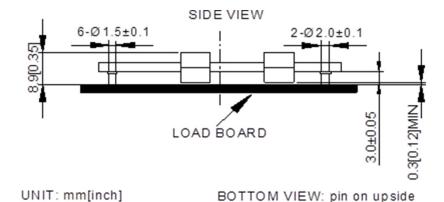
Load board

Unit: mm[inch]

6-Ф1.0±0.1

Bottom view: pin on upside


3±0.05


2-Ф1.5±0.1

Tolerance:  $X.Xmm \pm 0.5mm[X.X in. \pm 0.02in.]$  $X.XXmm \pm 0.25mm[X.XX in. \pm 0.01in.]$ 

# **Mechanical Specifications**

### **Mechanical Outlines - SMT Module**





TOLERANCE:  $X.Xmm\pm0.5mm[X.X in.\pm0.02in.]$  $X.XXmm\pm0.25mm[X.XX in.\pm0.01in.]$ 

## **Technical Reference Note**

Rev.11.15.16\_#1.3 AVO100B-48S3V3 Page 12

## **Pin Length Option**

| Device code suffix | _                     |
|--------------------|-----------------------|
| -4                 | $4.8$ mm $\pm0.25$ mm |
| -6                 | $3.8$ mm $\pm0.25$ mm |
| -8                 | $2.8$ mm $\pm0.25$ mm |
| None               | 5.8mm $\pm$ 0.25 mm   |

## **Pin Designations**

| Pin No | Name          | Function                |
|--------|---------------|-------------------------|
| 1      | Vin+          | Positive input voltage  |
| 2      | Remote On/Off | Remote control          |
| 3      | Vin-          | Negative input voltage  |
| 4      | Vo-           | Negative output voltage |
| 5      | S-            | Negative remote sense   |
| 6      | Trim          | Output voltage trim     |
| 7      | S+            | Positive remote sense   |
| 8      | Vo+           | Positive output voltage |

## **Environmental Specifications**

### **EMC Immunity**

AVO100B-48S3V3 power supply is designed to meet the following EMC immunity specifications:

Table 4. Environmental Specifications:

| Document                  | Description                                                                                                                                             | Criteria |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| EN55022, Class A Limits   | Conducted and Radiated EMI Limits                                                                                                                       | /        |
| IEC/EN 61000-4-2, Level 3 | Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test. Enclosure Port                        | В        |
| IEC/EN 61000-4-6, Level 2 | Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Continuous Conducted Interference. DC input port                              | A        |
| IEC/EN 61000-4-4, Level3  | Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient. DC input port.                                     | В        |
| IEC/EN 61000-4-5          | Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to surges - 600V common mode and 600V differential mode for DC ports | В        |
| EN61000-4-29              | Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Voltage Dips and short interruptions and voltage variations. DC input port    | В        |

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

Criterion C: Temporary loss of output, the correction of which requires operator intervention.

Criterion D: Loss of output which is not recoverable, owing to damage to hardware.

## **Recommend EMC Filter Configuration**

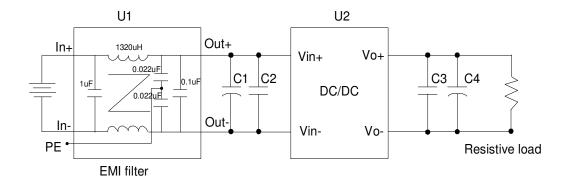



Figure 12 EMC test configuration

U1: Input EMC filter

U2: Module to test, AVO100B-48S3V3

C1 ~ C4: See Figure 20

### **Technical Reference Note**

Rev.11.15.16\_#1.3 AVO100B-48S3V3 Page 15

## **Safety Certifications**

The AVO100B-48S3V3 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AVO100B-48S3V3 power supply system

| Document     | File# | Description                |
|--------------|-------|----------------------------|
| UL/CSA 60950 |       | US and Canada Requirements |
| EN60950      |       | European Requirements      |
| IEC60950     |       | International Requirements |
| CSA60950     |       | International Requirements |
| UL94         |       | V-0 flammability rating    |
| CE           |       | CE Marking                 |

### **Operating Temperature**

The AVO100B-48S3V3 power supplies will start and operate within stated specifications at an ambient temperature from -40 °C to 85 °C under all load conditions. The storage temperature is -55 °C to 125 °C.

### **Thermal Considerations - Open frame**

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points. The temperature at these test points should not exceed the maximum values in Table 6.

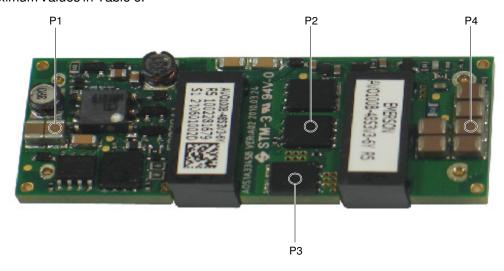



Figure 13 Temperature test point

Table 6. Temperature limit of the test point

| Test Point | Temperature Limit |
|------------|-------------------|
| P1         | 118 °C            |
| P2         | 130 °C            |
| P3         | 130 °C            |
| P4         | 118 °C            |

For a typical application, Figure 14 shows the derating of output current vs. ambient air temperature at different air velocity. Figure 15 shows the thermal image taken by a RF camera at a rated I/O condition.

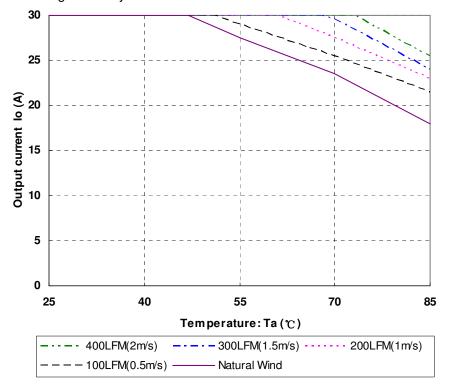



Figure 14 Output power derating, 48V<sub>in</sub>, air flowing across the converter from pin 3 to pin 1

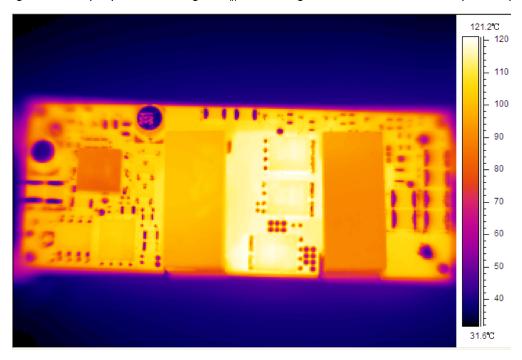



Figure 15 Thermal image,  $48V_{in}$ ,  $3.3V_{o}$ , full load, room temperature, 100LFM (air flowing from pin 3 to pin 1)

### **Thermal Considerations - Baseplate**

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points. The temperature at these test points should not exceed the maximum values in Table 7.

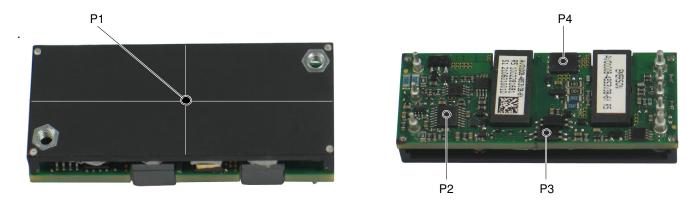



Figure 16 Temperature test point

Table 7. Temperature limit of the test point

| Test Point | Temperature Limit |
|------------|-------------------|
| P1         | 110 °C            |
| P2         | 122 °C            |
| P3         | 118 °C            |
| P4         | 127 °C            |

The converter can operate with a smaller heatsink and sufficient airflow. The typical test condition is shown in Figure 17.

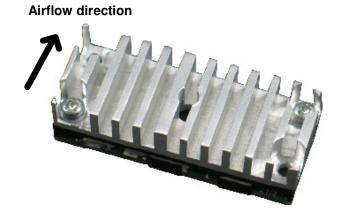



Figure 17 Typical test condition, heatsink size (L\*W\*H): 57.9mm \* 22.86mm \* 6.3mm

For a typical application, Figure 18 shows the derating of output current vs. ambient air temperature at different air velocity with a specified heatsink. Figure 19 shows the thermal image taken by a RF camera at a rated I/O condition.

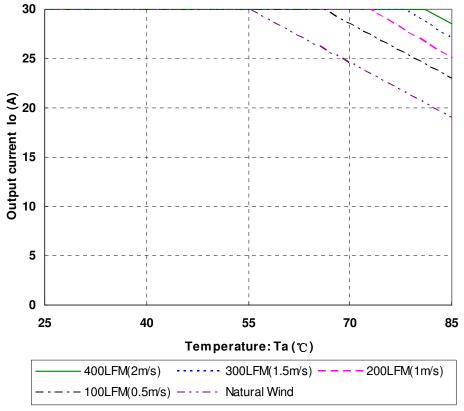



Figure 18 Output power derating,  $48V_{in}$ , air flowing across the converter from pin 3 to pin 1

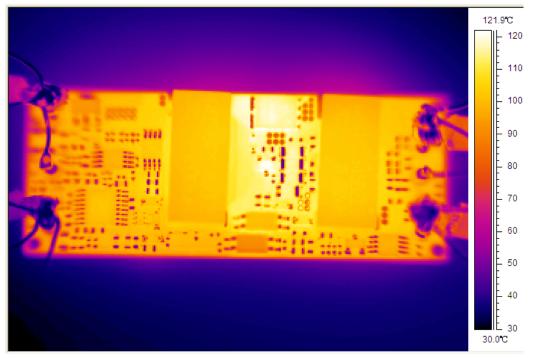



Figure 19 Thermal image,  $48V_{in}$ ,  $3.3V_{o}$ , full load, room temperature, 100LFM (air flowing from pin 3 to pin 1)

## **Qualification Testing**

| Parameter        | Unit (pcs) | Test condition                                                                                                   |  |  |
|------------------|------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Halt test        | 4-5        | $T_{a,min}$ -10 °C to $T_{a,max}$ +10 °C, 5 °C step, $V_{in}$ = min to max, 0 ~ 105% load                        |  |  |
| Vibration        | 3          | Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m²/s³, -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axis |  |  |
| Mechanical Shock | 3          | 30g, 6ms, 3axes, 6directions, 3time/direction                                                                    |  |  |
| Thermal Shock    | 3          | -40 °C to 100 °C, unit temperature 20cycles                                                                      |  |  |
| Thermal Cycling  | 3          | -40 °C to 55 °C, temperature change rate: 1°C/min, cycles: 2cycles                                               |  |  |
| Humidity         | 3          | 40 °C, 95%RH, 48h                                                                                                |  |  |
| Solder Ability   | 15         | IPC J-STD-002C-2007                                                                                              |  |  |

## **Application Notes**

### **Typical Application**

Below is the typical application of the AVO100B-48S3V3 power supply.

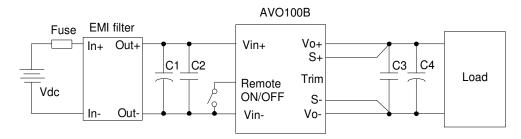



Figure 20 Typical application

C1: 100µF/100V electrolytic capacitor, P/N: UPM2A101MPD (Nichicon) or equivalent caps

C2, C3: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps

C4: 220µF/25V electrolytic capacitor, P/N: UPM1E221MED (Nichicon) or equivalent caps

Note: If ambient temperature is below -5 $^{\circ}$ C, additional 220 $\mu$ F tantalum capacitor (Low ESR, ESR $\leq$ 100m $\Omega$ ) is needed for output.

Fuse: External fast blow fuse with a rating of 6.3A/250Vac. The recommended fuse model is GDA-V-6.3A from Cooper Bussmann Inc.

#### Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AVO100B-48S3V3. The logic is CMOS and TTL compatible. Below is the detailed internal circuit and reference in AVO100B-48S3V3.

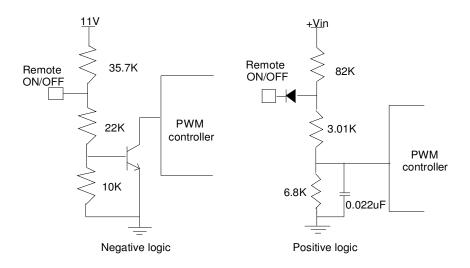



Figure 21 Remote ON/OFF internal diagram

The voltage between pin Remote ON/OFF and pin Vin- must not exceed the range listed in table "Output Specifications" to ensure proper operation. The external remote ON/OFF circuit is highly recommended as shown in Figure 22.

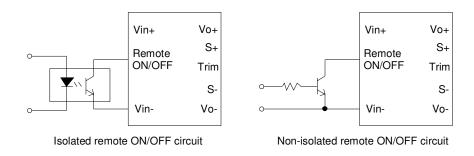



Figure 22 External Remote ON/OFF circuit

#### **Trim Characteristics**

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$\begin{split} R_{adj-down} &= \frac{510}{\Delta} - 10.2(K\Omega) \\ R_{adj-up} &= \frac{5.1 \times V_{nom} \times \left(100 + \Delta\right)}{1.225 \times \Delta} - \frac{510}{\Delta} - 10.2(K\Omega) \end{split}$$

 $\triangle$ : Output e rate against nominal output voltage.

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}}$$

V<sub>nom</sub>: Nominal output voltage

For example, to get 3.63V output, the trimming resistor is

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}} = \frac{100 \times (3.63 - 3.3)}{3.3} = 10$$

$$R_{adj-up} = \frac{5.1 \times 3.3 \times (100 + 10)}{1.225 \times 10} - \frac{510}{10} - 10.2 = 89.9(K\Omega)$$

The output voltage can also be trimmed by potential applied at the Trim pin.

$$V_O = (V_{trim} + 1.225) \times 1.347$$

Where  $V_{\it trim}$  is the potential that applied at the Trim pin, and  $V_o$  is the desired output voltage.

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power.

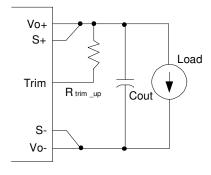



Figure 23 Trim up

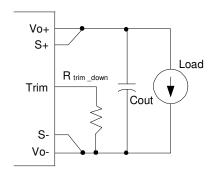



Figure 24 Trim down

### Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

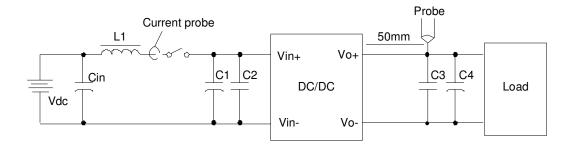



Figure 25 Input ripple & inrush current output ripple & noise test configuration

Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical C1 ~ C4: See Figure 20

Note - Using a coaxial cable with series 50ohm resistor and 0.68uF ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

#### **Sense Characteristics**

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line. See Figure 20.

If the sense compensate function is not necessary, connect S+ to  $V_{o}$ + and S- to  $V_{o}$ - directly.

### **Technical Reference Note**

Rev.11.15.16\_#1.3 AVO100B-48S3V3 Page 25

### **Soldering**

The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 255 °C for maximum 10s.

When soldering by hand, the iron temperature should be maintained at  $300\,^{\circ}\text{C} \sim 380\,^{\circ}\text{C}$  and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

### **Assembly for baseplate**

The maximum length of the screw driven into heat-sink is 3.3mm.

Artesyn Embedded Technologies

### **Hazardous Substances Announcement (RoHS of China R6)**

| Porto          |    | Hazardous Substances |    |                  |     |      |
|----------------|----|----------------------|----|------------------|-----|------|
| Parts          | Pb | Hg                   | Cd | Cr <sup>6+</sup> | PBB | PBDE |
| AVO100B-48S3V3 | х  | Х                    | Х  | Х                | Х   | Х    |

- x: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006
- $\sqrt{\cdot}$ : Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Artesyn Embedded Technologies has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

- 1. Solders (including high-temperature solder in parts) contain plumbum.
- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

# **Record of Revision and Changes**

| Issue | Date       | Description                                                                                                                                                                                                                                                                                          | Originators |
|-------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0   | 08.11.2014 | First Issue                                                                                                                                                                                                                                                                                          | A. Zhang    |
| 1.1   | 07.22.2016 | <ol> <li>Add the model AVO100B-48S3V3PB-6L</li> <li>Update the trim calculation formula</li> </ol>                                                                                                                                                                                                   | A. Zhang    |
| 1.2   | 08.22.2016 | Update picture                                                                                                                                                                                                                                                                                       | K. Wang     |
| 1.3   | 11.15.2016 | <ol> <li>Update overshoot spec from 0 to 5%</li> <li>Add Weight spec</li> <li>Add Isolation Resistance ≥10Mohm</li> <li>Soldering change time from 7s to 10s</li> <li>Mechanical Diagram Open frame and Baseplate 3.3 change to 3. Add open frame Module with SMT pin Mechanical Diagram.</li> </ol> | K. Wang     |

#### **WORLDWIDE OFFICES**

#### Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832

#### **Europe (UK)**

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom +44 (0) 1384 842 211

#### Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333



www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com