3 KEY CONSIDERATIONS WHEN SOURCING YOUR CHAMBER CLEANING RPS SYSTEM

2

The RPS chamber's coating composition

Anodic

Laver

The quality of your substrate material

- There is a difference between 'can grade' aluminum and high-purity aluminum
- Better substrate materials produce better coatings that last much longer
- Find an RPS system that uses a high-purity custom alloy for the construction of the plasma chamber

AIFx Particle Generation Mechanism:

IMCs create defects which allow fluorine to attack the exposed aluminum substrate and create particles

Anodic

layer

IMC IMC **AI Alloy** AI Alloy

Anodic

Layer

Inter-Metallic Compound (IMC) particles cause point failures and local anodic layer thinning

Exposed to plasma, the defective coating wears away, exposing more aluminum and generating more particles

Temperature control capability

Thermal expansion mismatch between the substrate and the protective coating can cause cracking which leads to degradation

of the chamber

Look for RPS systems that maintain temperature **below 90°C** in the inner surface of the reaction chamber when input water temperature is at 35°C.

Expansion mismatch cracks the anodic layer at temperatures > 150°C

Cooling System Design and Temperature **Test Result**

