

GAS DETECTION LIMITS

Highly Accurate, Reliable, and Stable Gas Monitoring

About LumaSense Technologies

LumaSense Technologies, an Advanced Energy Company, enables customers worldwide to achieve predictable and sustainable improvements in process efficiency and waste reduction. These customers have processes that include generating and transmitting electricity; oil and gas refining; processing industrial materials like steel and glass; and manufacturing advanced technologies such as semiconductor, wafers, and LEDs.

Our gas portfolio consists of gas modules and instruments that provide superior sensitivity over other gas detection techniques. Photoacoustic Spectroscopy (PAS) gas instruments were pioneered and perfected by Innova®. Microphone technology is an important tool in measuring gases through the use of PAS and this is a unique technique offering the customer an outstanding degree of measurement stability with exceptional sensitivity. Our engineering team continually works to improve the PAS technique and to test its applications in new areas. With PAS, the absorption (proportional to the concentration) is measured directly and not relative to a background, making PAS highly accurate and stable.

Detection limits of Innova gas-monitors from LumaSense using various optical filters

Since most gases have characteristic infrared absorption spectra, infrared spectroscopy is an excellent monitoring tool. LumaSense has a selection of Innova monitors exploring this technique – Infrared Photo Acoustic Spectroscopy (PAS) to provide very stable and sensitive gas monitors.

The selectivity of any infrared detection method is enhanced by selective irradiation with light of the desired wavelength. The range of optical filters is designed to provide the best options for choosing the optimal light wavelength range for the specific monitoring need.

Photoacoustic Gas Monitor – Innova 1512 is capable of simultaneous monitoring up to five component gases and water vapor in any air sample. The monitor is well suited and very efficient in both short and long term monitoring applications. In short term monitoring, the benefit is portability, the minimal warm-up time, and built-in data storage capability. In long term monitoring, the PAS system is especially stable, includes a multi-point sampling option, and data handling.

The Innova 1512 can be configured to perform almost any kind of monitoring task. A special optical filter is permanently installed and enables water vapor contribution to be measured separately during each measurement cycle. The instrument is then able to compensate for water vapor interference. Any other gas, which is known to be present in the ambient air, can be compensated for in a similar way. By installing an optical filter to selectively measure the concentration of the interfering gas, the user can set up the 1512 to compensate for the interfering gas' contribution.

The Photoacoustic Gas Monitor – Innova 1314i has the same specifications as the 1512 instrument, but it is housed in a rugged box that fits in a standard 19 inch rack.

Included with the 1512 and the 1314i is user software. The software displays measurement data in a table or a graphical window and it uses a SQL Server 2014 database giving online access to measurement data from Microsoft[®] Excel.

PHOTOACOUSTIC GAS MONITOR - INNOVA 1512

PHOTOACOUSTIC GAS MONITOR - INNOVA 1314i

Photoacoustic Spectroscopy (PAS)

PAS system used in the Innova instruments

UNIT OF IR-SOURCE WITH ELLIPSOID MIRROR

UNIT OF PAS MEASUREMENT CELL

Infrared spectra

The \rightarrow C – H fundamental stretching vibration frequencies are always in the region from 3.2 to 3.6 µm. The infrared spectra for Halothane, Enflurane, Isoflurane, Desflurane, Sevoflurane in that region is shown in the figure below.

The optical filters

Optical filters used in Innova instruments display different characteristics, while sharing a basic design.

Each filter comprises three separate infrared elements; a narrow-band pass element, a short-wave pass element and a wide-band pass element. The narrow-band pass element has very specific transmission characteristics. These are further defined by short-wave pass and wide-band pass elements, which prevent transmission of light at other wavelengths; as a result the optical filters have low leakage characteristics.

The narrow-band pass filter determines the center wavelength and bandwidth of the optical filter, and, thus, which gases can be detected. The ranges of optical filters span the entire "fingerprint" region (700 to 1350 cm⁻¹) plus the region between 2000 and 3000 cm⁻¹ (see Fig. 1 and Table 1). The "gap" in the infrared spectrum between 1350 cm⁻¹ and 2000 cm⁻¹ is due to strong water absorption. This region is only suited for monitoring water vapor.

In the Table 1 the specifications for the 27 optical filters is summarized. The bandwidth is given as a percentage of the filter center wavelength.

For example, the bandwidth of UA0987 becomes $3.4\mu m \times 6,0\% = 0.204\mu m$.

Fig. 1 and Table 1 contain 4 special filters

SB0527 is the standard filter for measurement of water vapor. The detection limit for this filter is 50 ppm.

UA6010 is a high sensitive filter for measurement of water vapor. The detection limit for this filter is 0.1 ppm. The main application is measurement of humidity in pure gases.

UA6009 is a high sensitive filter for measurement of carbon dioxide. The detection limit for this filter is 7 ppb. The main application is measurement of carbon dioxide in pure gases.

UA6008 is a dedicated filter for measurement of mustard gas. The detection limit for this filter is 0.1 ppm.

Choosing a filter

Immunity to interfering species is perhaps the most important consideration in any gas detection application. Careful consideration of potential interference is therefore essential. Depending on the concentration and type of interfering gases and on the measurement range required, different filters may be selected in different applications in order to measure the same gas.

All LumaSense optical filters comply with MIL-SC-48497A requirements.

Optical Filter Number	Filter Centre µm	Filter Centre cm ⁻¹	Bandwidth %
UA0987	3.4	2950	6
UA0986	3.6	2800	3
UA0989	3.6	2750	1.5
UA6009	4.3	2347	2
UA0983	4.4	2270	1.3
UA0985	4.5	2215	2
UA0984	4.7	2150	3
SB0527	5.1	1985	2
UA6010	5.9	1700	5.9
UA0968	7.7	1291	5.5
UA0969	8	1254	5.5
UA0970	8.2	1217	5.5
UA6008	8.3	1210	3
UA0971	8.5	1179	6
UA0972	8.8	1139	6
UA0973	9.1	1101	6
UA0974	9.4	1061	6.5
UA0936	9.8	1020	6.5
UA0975	10.2	981	6.5
UA0976	10.6	941	7
UA0988	10.6	946	3.7
UA0977	11.1	900	7
UA0978	11.6	861	7
UA0979	12.2	822	7.5
UA0980	12.8	783	7.5
UA0981	13.4	746	7.5
UA0982	14.1	710	7.5

Dimensions	
Diameter	31.00 mm
Height	5.15 mm
Operating Temperature	-20°C to +70°C
Relative Humidity	0% to 95% RH
Storage Temperature	-25°C to +70°C

Wavenumber/wavelength and bandwidth

Fig. 1 Center wavelength and half-power bandwidths of the optical filters

Information about this chart

For each gas/vapor in the table below, one or more optical filters and corresponding detection limits are listed.

The interference caused by water vapor and carbon dioxide in ambient air is a problem inherent in all infrared methods of detection. The extent of this interference is dependent on the optical filter used. Some optical filters are more sensitive to these substances than others, and color-coding has been introduced to illustrate the sensitivity of the filters (details are given below).

Color coding of the optical filters used in the chart

These optical filters are sensitive to water vapor.

In these regions of the infrared spectrum, water vapor interferes heavily with all infrared technologies. However, the unique water compensation algorithm of the Innova gas monitors minimizes this effect, thus, expanding the usable range of infrared measurements.

These optical filters are sensitive to carbon dioxide.

Carbon dioxide interference can, however, be compensated for when using the 1512 and 1314i instruments. An optical filter can be installed in the monitors to measure the level of carbon dioxide and the instruments can then automatically compensate for the interference.

These optical filters are not affected by interference from carbon dioxide and water vapor.

If a gas is measured in clean ambient air using one of these optical filters, the listed detection limit will not be affected by the presence of carbon dioxide or water vapor, except if these are present in very high concentrations.

Detection limit: The minimum concentration of a substance that produces an observable response. For the Innova gas monitors, the an "observable response" is equal to twice the noise signal on the measured concentrations when monitoring in dry air.

Sample Integration Time (SIT): To optimize each measurement task, providing faster response time or lower detection limits, the Photoacoustic Gas Monitor – Innova 1512 and the Photoacoustic Gas Monitor – Innova 1314i have the option of adjusting the SIT between 0.5 and 50 seconds.

SIT	0.5	1	2	5	10	20	50
DLF	3.2	2.2	1.6	1.0	0.7	0.5	0.3

The DLF is the Detection Limit Factor. To get the detection limit at a given SIT one has to multiply the detection limit in the chart with the corresponding DLF:

Detection limit = Detection limit in chart x DLF

For more information look at the example on the back of this chart.

Dynamic range: The 1512 and 1314i instruments have very wide dynamic ranges of up to five orders of magnitude. This means that the measurement range is from the detection limit of a gas up to 100,000 times the detection limit at 5 SIT.

Note: This chart should only be used as a guide when choosing an optical filter for a specific measurement task. If more than one infrared absorbing gas is present in the air being monitored, this will frequently affect the choice of optical filter. Consequently, it is recommended that the local LumaSense representative is contacted for help in choosing the optimum filter configuration.

Notification used in the chart:

= Measured detection limit verified by LumaSense laboratory

Normal = Calculated detection limit

 Relative strenght of absorption band:

 vw = very week
 s = strong

 w = weak
 vs = very strong

 m = medium

Detection limits in part per million at 20°C,										(Optical	l filter r	numbei	-											
1 atmosphere pressure and SIT=5 sec.											С	entre	wavele	ength (i	n micro	ometer	-)								
												Cent	re wav	/enumb	ber (in)	cm⁴)									
Name	rutto-	Molec	987	986	989	983	985	984	968	969	970	971	972	973	974	936	975	988	976	977	978	979	980	981	982
for	ormula	weight	3.4	3.6	3.7	4.4	4.5	4.7	7.7	8.0	8.2	8.5	8.8	9.1	9.4	9.8	10.2	10.6	10.6	11.1	11.6	12.2	12.8	13.4	14.1
		Ŭ	2950	2800	2750	2270	2215	2150	1291	1254	1217	1179	1139	1101	1061	1020	981	946	941	900	861	822	783	746	710
Acetaldehyde C2	₂ H ₄ O	44.05	0.1	0.08	0.2								0.2	0.2					_						
Acetic acid C ₂	2H4O2	60.05									0.04	0.03													
Acetic anhydride C4	$_{1}H_{e}O_{2}$	102.09								0.04					0.05					0.1					
Acetone C ₂	2HeO	58.08	0.1							0.07	0.06														
Acetonitrile C ₂	2H2N	41.05	W		W										2.5	w				W					
Acetylene	2 <u>3</u>	26.04								1													0.3	0.3	0.3
Acrolein C ₂	2H4O	56.06	0.1	0.1	m								0.2			0.09			0.1						
Acrylonitrile C ₂	2H2N	53.06														0.3	0.2		0.2						
Allyl chloride Ca	aH₌Cl	76.52	0.2							0.2									0.2					0.4	
Ammonia NE	<u>з 5 – .</u> На	17.03												0.2			0.2		0.2						
Aniline	eH-N	93.13	0.3							0.09					0.2									0.2	
Arsine As	sH _o	77.95	0.0				0.05	0.03		0.00					0.2		0.4		0.4					0.2	
Benzaldehvde C-	-H-O	106.12		0.07			0.00	0.00				0.09					0.1		0.1					0.3	
Benzene C-	-H-	78.11	0.1	0.07								0.00			09	0.8	21							0.0	03
$\frac{ \mathbf{B}_{6} }{ \mathbf{B}_{6} } = \frac{ \mathbf{B}_{6} }{ \mathbf{B}_{6} } = $		126.58	0.1							0.1					0.0	0.0	21							0.3	0.0
Biphopyl	л 1701 Ц	154.21	0.1 m							0.1					_					14/				0.5	0.1
Boron trifluorido	12''10 E	67.81														0.2				vv				0.07	
Bremeferm / Tribrememethane	F3	07.01	1011									0.1	0.06	10		0.2								0.07	1
Bromoronni / mbromornemane CF		252.73	0.0						0.5			0.1	0.06	12											
Bromometnane CF	H ₃ Br	94.94	0.2						0.5							0.0			0.1	0.0					
	4 ^H 6	54.09	0.2	0.5												0.2			0.1	0.2					
Butane C ₄	4H10	58.12	0.01	0.5																					_
Butane-2,3-dione C ₄	4H ₆ O ₂	86.09											0.06	0.06											
Butanetnioi / Butyl mercaptan C ₄	4H105	90.19	S							S									0.5			m			
1-Butanol C ₄	4H10O	/4.12	0.01							0.2					0.08				0.5						
2-Butanol C ₄	₄ H ₁₀ O	74.12	S										m			m				m					
tert-Butanol / tert-Butyl alcohol C ₄	₄ H ₁₀ O	74.12	0.03										0.08							0.2					
2-Butanone / Methyl ethyl ketone(MEK) C ₄	₄ H ₈ O	72.11	0.04	1							0.2	0.07							0.5						
2-Butenal / Crotonaldehyde C ₄	₄ H ₆ O	70.09	m	m	S								S	0.2			S								
2-Butoxyethanol C ₆	₆ H ₁₄ O ₂	118.17	0.01									0.05	0.04								0.4				
n-Butyl acetate C ₆	₆ H ₁₂ O ₂	116.16	0.02							0.01				0.08	0.05										
sec-Butyl acetate C ₆	₆ H ₁₂ O ₂	116.16	S							S				S				m							
tert-Butyl acetate C ₆	₆ H ₁₂ O ₂	116.16	S							S		S													
Butyl acrylate C ₇	₇ H ₁₂ O ₂	128.17	0.02	0.02							0.02			0.09											
tert-Butyl alcohol / tert-Butanol C ₄	₄ H ₁₀ O	74.12	0.03										0.08							0.2					
Butyraldehyde C ₄	₄ H ₈ O	72.11	S	S																				1	
Butyric acid C ₄	₄ H ₈ O ₂	88.11	0.04										0.04	0.06											
Carbon dioxide CC	0 ₂	44.01				5	70																	13	1.5
Carbon disulfide CS	S ₂	76.14					1	0.6																	
Carbon monoxide CC	0	28.01					0.5	0.2																	
Carbonyl chloride / Phosgene CC	OCI ₂	98.92																			0.02	0.02			
Carbonyl sulfide CC	OS	60.08	0.3					1													0.6				
Chlorobenzene C ₆	₆ H ₅ Cl	112.56												0.09	0.2										0.2
2-Chloroethyl ether C4	4H8Cl2O	143.01	0.03	0.4						0.4			0.02	0.02											
Chloroform CH	HCl ₃	119.38									0.09											0.3	0.04		
Chloromethane CH	H ₃ CI	50.49	0.2													2								0.6	
1-Chloro-1-nitropropane C3	3H6CINO2	123.54	m							m								m			m				
α-Chlorotoluene / Benzyl chloride C ₇	7H7CI	126.58	0.1							0.1														0.3	0.1
m-Cresol / 3-Methylphenol C-7	-7H8O	108.14	0.07									0.05							0.3					0.3	
Crotonaldehyde / 2-Butenal	4H ₆ O	70.09	m	m	S									0.2			S								

Name	Brutto-	Molec	987	986	989	983	985	984	968	969	970	971	972	973	974	936	975	988	976	977	978	979	980	981	982
	formula	weight	3.4	3.6	3.7	4.4	4.5	4.7	7.7	8.0	8.2	8.5	8.8	9.1	9.4	9.8	10.2	10.6	10.6	11.1	11.6	12.2	12.8	13.4	14.1
			2950	2800	2750	2270	2215	2150	1291	1254	1217	1179	1139	1101	1061	1020	981	946	941	900	861	822	783	746	710
Cumene / Isopropylbenzene	C ₉ H ₁₂	120.19	m											m		0.7							m		1
Cyanogen / Dicyan	C ₂ N ₂	52.03					1.1	0.6																	
Cyanogen bromide	BrCN	105.92					0.1																		
Cyanogen chloride	CNCI	61.47					0.3	0.4																	
Cyclohexane	C ₆ H ₁₂	84.16	0.008	0.2						0.7															1
Cyclohexanone	C ₆ H ₁₀ O	98.14	s								0.2									m					
Cyclohexene	C ₆ H ₁₀	82.14	0.02																	0.9					1
Cyclopentane	C ₅ H ₁₀	70.1	VS	0.7														m							
n-Decane	C ₁₀ H ₂₂	142.28	0.007						0.3																1
1-Decene	C ₁₀ H ₂₀	140.27	0.009						0.3										0.3						
Desflurane	C ₃ H ₂ F ₆ O	168.04									0.005		0.008												m
Deuterium oxide	D ₂ O	20.03		0.3						s				s											
Diamine / Hydrazine	N ₂ H ₄	32.05													0.6	0.6					0.6				
Diaminoethane	C ₂ H ₈ N ₂	60.10	0.04											0.7									0.1		
Diborane	B ₂ H ₆	27.67										0.1	0.1												
o-Dichlorobenzene / 1,2-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00	4												0.3									0.1	
m-Dichlorobenzene / 1,3-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00	2											0.1									0.1	0.15	
p-Dichlorobenzene / 1,4-Dichlorobenzene	C ₆ H ₄ Cl ₂	147.00												0.05	0.2							0.2			
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	98.96	0.2								0.2				0.1										0.09
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	98.96	0.2							0.1														0.3	
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	96.94												VS								0.09		m	
1,2-Dichloroethene (cis)	C ₂ H ₂ Cl ₂	96.94							0.2												0.09	0.2			S
1,2-Dichloroethene (trans)	C ₂ H ₂ Cl ₂	96.94										0.2									0.07	0.05			
Dichloromethane	CH ₂ Cl ₂	84.93	0.6								0.5												0.1	0.08	
1,1-Dichloro-1-nitroethane	C ₂ H ₃ Cl ₂ NO ₂	143.96													m						m				m
1,2-Dichloropropane	C ₃ H ₆ Cl ₂	112.99	0.08									0.3				0.3								0.5	
Diethylamine	C ₄ H ₁₁ N	73.14	0.02										0.1											0.4	
2-(Diethylamino)-ethanol	C ₆ H ₁₅ NO	117.19	S									m			0.4										
Diethylen glycol dimethyl ether	C ₆ H ₁₄ O ₃	134.17	0.01										0.02	0.02											
Diethylen glycol butyl ether	C ₈ H ₁₈ O ₃	162.23	s	m										s	s					m					
Diethylentriamin	C ₄ H ₁₃ N ₃	103.17	s		0.4							0.4			0.3							0.3			
Diethyl ether	C ₄ H ₁₀ O	74.12	0.02										0.02	0.08											
Diethyl ketone (DEK) / 3-Pentanone	C ₅ H ₁₀ O	86.13	0.01										0.1						0.2						
N,N-Dimethyl acetamide	C ₄ H ₉ NO	87.12	m								m					0.3	0.2								
Dimethylamine (DMA)	C ₂ H ₇ N	45.08	0.02	0.04									0.1										0.3		
2-(Dimethylamino)-ethanol	C ₄ H ₁₁ NO	89.14	s											VS							m				
N,N-Dimethylanilin	C ₈ H ₁₁ N	121.18	m									m				m									m
Dimethyl disulfide	C ₂ H ₆ S ₂	94.20	s						s									0.6							
Dimethyl ester sulfuric acid (DMS)	C ₂ H ₆ O ₄ S	126.13	0.07													0.02	0.06					0.05			
Dimethylether	C ₂ H ₆ O	46.07	s										0.07		0.2										
Dimethylethylamine	C ₄ H ₁₁ N	73.14	s								0.2			0.2									0.8		
Dimethylformamide (DMF)	C ₃ H ₇ NO	73.09	0.1								0.3			0.06	0.07		3							0.9	
2,6-Dimethyl-4-heptanone	C ₉ H ₁₈ O	142.24	0.008							0.5				0.3											
1,1-Dimethylhydrazine	C ₂ H ₈ N ₂	60.10	s		-										s			S				s			
Dimethylnitrosamine	C ₂ H ₆ N ₂ O	74.08	0.04							0.06						0.03									
Dimethyl sulfoxide	C ₂ H ₆ OS	78.13	0.3											0.07		0.6									
Dimethyl sulfate	C ₂ H ₆ O ₄ S	126.13	m									s				VS						0.06			
Dimethyl sulfide	C ₂ H ₆ S	62.13	S	0.4											0.7	0.6									
Dimethyl sulfite	C ₂ H ₆ O ₃ S	110.13	m								S						S							m	
Dinitrogen difluoride	N ₂ F ₂	66.01															0.02	0.2							
Dinitrogen oxide / Nitrous Oxide	N ₂ O	44.01					0.03	0.5																	
1,4-Dioxane / 1,4-Diethylene oxide	C ₄ H ₈ O ₂	88.11	0.02										0.02							0.07					

Name	Brutto-	Molec	987	986	989	983	985	984	968	969	970	971	972	973	974	936	975	988	976	977	978	979	980	981	982
	formula	weight	3.4	3.6	3.7	4.4	4.5	4.7	7.7	8.0	8.2	8.5	8.8	9.1	9.4	9.8	10.2	10.6	10.6	11.1	11.6	12.2	12.8	13.4	14.1
			2950	2800	2750	2270	2215	2150	1291	1254	1217	1179	1139	1101	1061	1020	981	946	941	900	861	822	783	746	710
Diphenyl ether	C ₁₂ H ₁₀ O	170.21	m/w							s	s									s					
DipropyInitrosamine	C ₆ H ₁₄ N ₂ O	130.19	0.03									0.1			0.05										
Enflurane	C ₃ H ₂ CIF ₅ O	184.49	0.1									0.007	0.005									0.08			
Epichlorohydrin	C ₃ H ₅ CIO	92.52	m										0.9								0.2				
Ethane	C ₂ H ₆	30.07	0.02																			1			
Ethanethiol / Ethyl mercaptan	C ₂ H ₆ S	62.13	s														1		2						
Ethanol	C ₂ H ₆ O	46.07	0.03										0.2		0.08	0.08									
Ethanolamine	C ₂ H ₇ NO	61.08	0.09												0.1							0.7			
Ethene	C ₂ H ₄	28.05	0.3														0.2			0.4					
2-Ethoxyethanol / Cellosolve	C ₄ H ₁₀ O ₂	90.12	S										0.02		S				m						
2-Ethoxy ethylacetate	C ₆ H ₁₂ O ₃	132.16	0.02						0.02		0.01								0.3						
Ethyl acetate	C ₄ H ₈ O ₂	88.11	0.03							0.01					0.05						0.8				
Ethyl acrylate	C ₅ H ₈ O ₂	100.12	0.04									0.02			0.06				0.2						
Ethylamine	C ₂ H ₇ N	45.08												0.2								0.07	0.09		
Ethyl benzene	C ₈ H ₁₀	106.17	0.01												0.5									0.4	0.09
Ethylene glycol / Ethanediol	C ₂ H ₆ O ₂	62.07	m											0.08	0.05						m				
Ethylene oxide	C ₂ H ₄ O	44.05	0.08							0.3										0.2	0.1				
Ethyl formate	C ₃ H ₆ O ₂	74.08	0.03									0.03				0.4									
2-Ethyl-1-Hexanol	C ₈ H ₁₈ O	130.23	0.008												0.08		0.3								
Ethylhexyl acrylate	C ₁₁ H ₂₀ O ₂	184.28	s									0.03				m			0.4						
5-Ethyl-2-methylpyridine	C ₈ H ₁₁ N	121.18	S												m							0.6			
Fluorobenzene	C ₆ H ₅ F	96.10	7								0.03													0.2	
Formaldehyde	CH ₂ O	30.03	0.1	0.04	0.1																				
Formic acid	CH ₂ O ₂	46.03	0.01								0.2		0.04	0.02											
Freon 11 / Trichlorofluoromethane	CCI ₃ F	137.37												0.04	0.04						0.02				
Freon 12 / Dichlorodifluoromethane	CCl ₂ F ₂	120.91										0.02	0.02							0.03					
Freon 12B2 / Dibromodifluoromethane	CBr ₂ F ₂	209.82												0.08	0.1							0.1			
Freon 13 / Chlorotrifluoromethane	CCIF ₃	104.46									0.02	0.04		0.05											
Freon 14 / Tetrafluoromethane	CF ₄	88.00								0.004	0.08														
Freon 21 / Dichlorofluoromethane	CHCl ₂ F	102.92	VW											0.01								0.02			
Freon 22 / Chlorodifluoromethane	CHCIF ₂	86.47	0.3										0.02	0.01									0.2		
Freon 23 / Trifluoromethane	CHF3	70.01	m										0.007												
Freon 32 / Difluoromethane	CH ₂ F ₂	52.02											0.04	0.01	0.03										
Freon 112 / 1,1,2,2-Tetrachloro-1,2-difluoroethane	C ₂ Cl ₄ F ₂	203.83											s	s		S				S					
Freon 113 / 1,1,2-Trichloro-1,2,2-trifluoroethane	C ₂ Cl ₃ F ₃	187.38	0.4								0.02	0.02			0.03							0.04			
Freon 114 / 1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄	170.92									0.01		0.01								0.02				
Freon 115 / Chloropentafluoroethane	C ₂ CIF ₅	154.47										0.001		0.003			0.001								
Freon 116 / Hexafluoroethane	C ₂ F ₆	138.01								0.01				0.02											
Freon 134a / Tetrafluoroethane	$C_2H_2F_4$	102.03	0.05									0.01	0.04						0.2						
Freon 141b/1,1-Dichloro-1-fluoroethane	C ₂ H ₃ Cl ₂ F	116.95															0.6						0.1		
Freon 152 / 1,2-Difluoroethane	C ₂ H ₄ F ₂	66.05	0.08										0.002						0.09						
Freon152a / 1,1-Difluoroethane	C ₂ H ₄ F ₂	66.05	VW									0.05	0.01												
Freon 160 / Chloroethane	C ₂ H ₅ Cl	64.51	0.06							0.2							0.4								
Freon 227 / 1,1,1,2,3,3,3-Heptafluoropropane	C ₃ HF ₇	170.03								0.005	0.007		0.01												
Freon 1113 / Chlorotrifluoroethene	C2CIF3	116.47								0.07					0.04										
Freon 404a														0.2			0.1								
Furfural	C ₅ H ₄ O ₂	96.08		0.2												0.1							0.2		
Furfuryl alcohol	C ₅ H ₆ O ₂	98.10	m										S				0.1							S	
Glutaraldehyde	C ₅ H ₈ O ₂	100.12		0.2	0.06																	0.7			
Halothane	C ₂ HBrClF ₃	197.38	0.9									0.02	0.02									0.09			
1,1,1,2,3,3,3-Heptafluoropropane	C ₃ HF ₇	170.03								0.005	0.007		0.02												
n-Heptane	C ₇ H ₁₆	100.20	0.009	0.4																					

Name	Brutto-	Molec	987	986	989	983	985	984	968	969	970	971	972	973	974	936	975	988	976	977	978	979	980	981	982
	formula	weight	3.4	3.6	3.7	4.4	4.5	4.7	7.7	8.0	8.2	8.5	8.8	9.1	9.4	9.8	10.2	10.6	10.6	11.1	11.6	12.2	12.8	13.4	14.1
			2950	2800	2750	2270	2215	2150	1291	1254	1217	1179	1139	1101	1061	1020	981	946	941	900	861	822	783	746	710
2-Heptanone	C ₇ H ₁₄ O	114.19	0.01	0.2								0.3													
3-Heptanone	C ₇ H ₁₄ O	114.19	m											m		m									
Hexachloroethane	C ₂ Cl ₆	236.74																					s		
Hexafluorobenzene	C ₆ F ₆	186.05														0.01	0.02								
Hexanal	C ₆ H ₁₂ O	100.16	0.02	m	s				0.2												-				
n-Hexane	C ₆ H ₁₄	86.18	0.009	0.1							0.2														
Hexanoic acid	C ₆ H ₁₂ O ₂	116.16	s									m						m							
Hexanol	C ₆ H ₁₄ O	102.17	0.02												s	s									
1-Hexene	C ₆ H ₁₂	84.16	0.01																	0.2					
HFO-1233zd / 1-Chloro-3,3,3-trifluoropropene	C ₃ H ₂ CIF ₃	130.49										0.01	0.009								0.07				
HFO 1234yf / 2,3,3,3-Tetrafluoropropene	C ₃ H ₂ F ₄	114.04									VS	0.01		0.3					0.2						
HFO 1234ze / trans-1,3,3,3-Tetrafluoroprop-1-ene	C ₃ H ₂ F ₄	114.04											0.05	0.05					0.5						
Hydrazine / Diamine	N ₂ H ₄	32.05						-							0.6	0.6					0.6				
Hydrogenchloride	HCI	36.46		0.4																					
Hydrogencyanide	HCN	27.03																						0.5	0.2
Hydrogensulfide	H ₂ S	34.08								14	22														
4-Hydroxy-4-methyl-2-pentanone	C ₆ H ₁₂ O ₂	116.16	s										m						m						
Isobutyl acetate / 2-Methyl-1-propyl acetate	C ₆ H ₁₂ O ₂	116.16	S								s					S									
Isobutyl alcohol / 2-Methyl-1-propanol	C4H100	74.12	S	m											s				m						
Isoflurane	C ₂ H ₂ CIF ₅ O	184.49	0.3									0.005		0.008								0.1			
Isooctane / 2.2.4 Trimethylpentane	CoH10	114.23	0.009								0.4	0.5													
Isopentane / 2-Methylbutane	C ₅ H ₁₀	72.15	0.006	0.4																					
Isopropyl acetate / 2-Propyl acetate	C_H10Q0	102.13	m									s			s				m						
Isopropylbenzene / Cumene	CoH40	120.19	m											m	-	07							m		
Limonene	C10H10	136.23	0.01																	02	0.4				
Maleic anhydride	C4H2O2	98.06	0.01								m				m					m	0				
Methane	CH.	16.04	01						02	0.4															
Methanethiol / Methyl mercaptan	CH ₄ S	48.11	0.1											0.9		1									
Methanol	CH40	32.04	0.04								0.5			0.0	0.08	-	02								
2-Methoxyethanol	CoHoOo	76.09	m	0.1							0.0		0.04	0.05	0.00		0.2								
Methoxyflurane	CoH4CloEoO	164.97	0.05							0.04				0.01								0.03			
1-Methoxy-2-propanol	C4H10Q0	90.12	s							0.01	0.06		0.02	0.04								0.00			
Methyl acetate	C ₀ H ₂ O ₂	74.08	0.04							0.04	0.00		0.02	0.01	0.05										
Methyl acrylate	C.H.O.	86.09	0.05								0.02			01			02								
Methylamine	CH-N	31.06	0.04	02							0.02			0.1		0.6	0.2						02		
o-Methylanilin / o-Toluidine	C-H-N	10715	0.05	0.2						0.1					0.4	0.0							0.2	0.1	
Methylbiphenyl	CroHro	168.23	S							0.1		m			0.1	m				_			s	0.1	
2-Methylbutadien / Isoprene	C _c H _o	68.12	01																04	0.3					
3-Methyl-1-butanol / Isoamyl alcohol	C-H++0	88.15	9.1	6											m				0.1	0.0					
3-Methyl-2-butanone / Methyl isopropyl ketone	C-H++0	86.13	0.02	0					02										0.5						
3-Methylbutyl acetate / Isoamyl acetate	C=H44Oa	130.19	0.02				_		0.2		0.01					0.1			0.0	09					
Methyl tert-butyl ether	CcH1202	88.15	0.02								0.01			0.05		0.1				0.0					
Methyl chloroformate		92.50	0.01								0.04	0.01	0.02	0.00								02			
Methylcyclohexane	C_H.,	98.19	0.01							1	0.01	0.01	0.02									0.2			
Methyl formate	C-H-O-	60.05	0.01				_			0.03		0.02								03					
4-Methyl-3-bentanone	CoH402	128.21	0.00							0.00		0.02		m			m			0.0					
Methylhydrazine	CH-N	46.07	0.07	01																0.2			03		
Methyl iodide	CH _a l	1/1 0/	0.07	0.1						0.2										1.2			0.0		
Methyl isobutyl carbinol / A-Methyl-2-pentanol	Collero	10217	0.0 c							0.2			m		m					<u>r.</u> 0 m					
Methyl isobutyl ketone(MIRK)/4-Methyl-2-pentanona	C-H-0	100.16	0.02									0.08							0.1	111					
Methyl isopronyl ketone / 3-Methyl-2-butanono	C-H+0	86.12	0.02						0.2			0.00							0.1						
Methyl methacrylate	C-H-C	100.13	0.02						0.2			0.02							0.0				0.6		
Moury moundorylate	10511802	100.12	0.04									0.02							0.2				0.0		

Name	Brutto-	Molec	987	986	989	983	985	984	968	969	970	971	972	973	974	936	975	988	976	977	978	979	980	981	982
	formula	weight	3.4	3.6	3.7	4.4	4.5	4.7	7.7	8.0	8.2	8.5	8.8	9.1	9.4	9.8	10.2	10.6	10.6	11.1	11.6	12.2	12.8	13.4	14.1
			2950	2800	2750	2270	2215	2150	1291	1254	1217	1179	1139	1101	1061	1020	981	946	941	900	861	822	783	746	710
4-Methyl-2-pentanol / Methyl isobutyl carbinol	C ₆ H ₁₄ O	102.17	s										m		m					m					
2-Methylpropane / Isobutane	C ₄ H ₁₀	58.12	0.01										0.9												
2-Methylpropene	C ₄ H ₈	56.11	0.02																	0.2	0.4				
1-Methyl-2-pyrrolidone / N-Methylpyrrolidone	C ₅ H ₉ NO	99.13	s						0.04		0.2			0.3											
Methylsalicylate	C ₈ H ₈ O ₃	152.15	0.1								0.02	0.03									0.7				
α-Methylstyrene	C ₉ H ₁₀	118.18	m																	S			0.5		S
2-Methylstyrene	C ₉ H ₁₀	118.18	S														S			m			s		
Monomethylhydrazine	CH ₆ N ₂	46.07	S													s			S					m	
Morpholine	C ₄ H ₉ NO	87.12	m	0.04											0.2								0.2		
Naphthalene	C ₁₀ H ₈	128.17	0.07							0.5													0.06		
Nitrobenzene	C ₆ H ₅ NO ₂	123.11													0.5						0.3				
Nitroethane	C ₂ H ₅ NO ₂	75.07	m														m			m					
Nitrogentrifluoride	NF ₃	71.00													0.2			0.1		0.2					
Nitromethane	CH ₃ NO ₂	61.04												0.5						0.7					
1-Nitropropane	C ₃ H ₇ NO ₂	89.09	m								m												m		
2-Nitropropane	C ₃ H ₇ NO ₂	89.09	0.05											0.9							0.8				
Nitrosomorpholine	C ₄ H ₈ N ₂ O ₂	116.12		0.2											0.09						0.9				
3-Nitrotoluene / m-Nitrotoluene	C ₇ H ₇ NO ₂	137.14	W											0.3								0.3			
Nitrous Oxide / Dinitrogen oxide	N ₂ O	44.01					0.03	0.5																	
Nonane	C ₉ H ₂₀	128.26	0.007						0.4																
Nonenal (Trans-2-nonenal)	C ₉ H ₁₆ O	140.22	0.03										0.2				0.5								
Novec 5110	C ₅ F ₁₀ O	266.04								0.003	0.004	0.007													
Novec 7300	C ₇ H ₃ F ₁₃ O	350								0.002		0.007					0.04								
Octane	C ₈ H ₁₈	114.23	0.007	0.2																					
1-Octanol	C ₈ H ₁₈ O	130.23	0.01											0.2		0.2									
1-Octene	C ₈ H ₁₆	112.21	0.01						0.4										0.2						
Pentanal	C ₅ H ₁₀ O	86.13	0.02		s				0.3																
Pentane	C ₅ H ₁₂	72.15	0.01	0.3																					
2-Pentanone	C ₅ H ₁₀ O	86.13	0.01									0.1	0.2						0.8						
n-Pentyl acetate / Amyl acetate	C ₇ H ₁₄ O ₂	130.19	0.02	0.7						0.03					0.06										
Perfluoro-1,3-dimethylcyclohexane	C ₈ F ₁₆	400.06									s						0.06			0.07					
Perfluoromethylcyclohexane	C ₇ F ₁₄	350.05									s						0.03			0.1					
Phenol	C ₆ H ₆ O	94.11	0.6									0.008	0.1		0.4										
Phenylhydrazine	C ₆ H ₈ N ₂	108.14	VW							m														m	
1-Phenylpropane	C ₉ H ₁₂	120.19	0.02						0.6																S
Phosgene / Carbonylchloride	COCI ₂	98.92																			0.02	0.02			
Phosphine	PH ₃	34.00												0.3		0.5									
Phthalic anhydride	C ₈ H ₄ O ₃	148.1												0.2						0.5					0.3
α-Pinene	C ₁₀ H ₁₆	136.23	0.009											0.4									0.6		
Propadiene	C ₃ H ₄	40.06	0.8																		0.1				
Propane	C ₃ H ₈	44.10	0.02	0.4																					
1,2-Propanediol / Propylene glycol	C ₃ H ₈ O ₂	76.09	S												0.01						m				
Propanoic acid	C ₃ H ₆ O ₂	74.08	0.1										0.03			0.3									
Propanol	C ₃ H ₈ O	60.10	S	0.3											0.08										
2-Propanol	C ₃ H ₈ O	60.10	0.02									0.09	0.07						0.2						
Propene	C ₃ H ₆	42.08	0.05														0.4			0.3					
n-Propyl acetate	C ₅ H ₁₀ O ₂	102.13	m								S					m				m				W	
2-Propyl acetate / Isopropyl acetate	C ₅ H ₁₀ O ₂	102.13	m									S			S				m						
Propylene glycol / 1,2-Propanediol	C ₃ H ₈ O ₂	76.09	S												0.01						m				
Propylene glycol monomethyl ether acetate	C ₆ H ₁₂ O ₃	132.16									0.01		0.02	0.03											
Propylene oxide	C ₃ H ₆ O	58.08	S										0.7									0.2			
Propyl nitrate	C ₃ H ₇ NO ₃	105.09	S														S		S					m	

Name	Brutto-	Molec	987	986	989	983	985	984	968	969	970	971	972	973	974	936	975	988	976	977	978	979	980	981	982
	formula	weight	3.4	3.6	3.7	4.4	4.5	4.7	7.7	8.0	8.2	8.5	8.8	9.1	9.4	9.8	10.2	10.6	10.6	11.1	11.6	12.2	12.8	13.4	14.1
			2950	2800	2750	2270	2215	2150	1291	1254	1217	1179	1139	1101	1061	1020	981	946	941	900	861	822	783	746	710
Propyne / Methylacetylene	C ₃ H ₄	40.06	0.06							0.4															
Pyridine	C ₅ H ₅ N	79.10	0.4													0.7								0.3	
Selenium hexafluoride	SeF ₆	192.95								0.4													0.01		0.2
Sevoflurane	C ₄ H ₃ F ₇ O	200.06	0.08								0.006		0.01						0.2						0.3
Silane	SiH ₄	32.12																S		m					
Silicon tetrafluoride	SiF ₄	104.08													0.03	0.02									
Styrene	C ₈ H ₈	104.15	0.1																0.3				0.2		
Sulfur dioxide	SO ₂	64.06										0.4	0.3												
Sulfur hexafluoride	SF ₆	146.06															0.009	0.006	0.004						
1,1,2,2-Tetrabromoethane	C ₂ H ₂ Br ₄	345.65	vw									m								s				m	
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄	167.85									0.2											0.1		0.06	
Tetrachloroethene	C ₂ Cl ₄	165.83																	0.04	0.07			0.2		
Tetrachloromethane	CCl ₄	153.82																				0.03	0.02		
Tetraethylplumbane	C ₈ H ₂₀ Pb	323.44	s										0.2						s						
Tetrahydrofuran	C ₄ H ₈ O	72.11	0.01												0.09			0.5							
Tetrahydrothiophene	C ₄ H ₈ S	88.17	0.02									m									2				
Thionyl chloride	Cl ₂ OS	118.97								0.02	s														
Thionyl fluoride	F ₂ OS	86.06																				m		0.07	s
Thiophene	C ₄ H ₄ S	84.14								s											m				
Toluene	C ₇ H ₈	92.14	0.05												0.5									0.4	0.2
2,4-Toluenediamine	C ₇ H ₁₀ N ₂	122.17	w									m										m			
2,4-Toluene diisocyanate (TDI)	C ₉ H ₆ N ₂ O ₂	174.16					s								m						m				
o-Toluidine / o-Methylanilin	C ₇ H ₉ N	107.15	0.05							0.1														0.1	
Total Organic Carbon ref. Methane (TOC)			0.1																						
Total Organic Carbon ref. Propane (TOC)			0.02																						
Total Organic Carbon ref. Toluene (TOC)			0.05																						
1,2,4-Trichloro benzene	C ₆ H ₃ Cl ₃	181.45												s		0.4							s		
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	133.40	0.3											0.04										0.08	
1,1,2-Trichloroethane	C ₂ H ₃ Cl ₃	133.40	0.7								0.4								0.3					0.07	
Trichloroethene	C ₂ HCl ₃	131.39		0.3						0.4					4				0.07		0.08				
Trichloronitromethane / Chloropicrine	CCl ₃ NO ₂	164.38	w							0.3								0.4		0.03					
1,2,3-Trichloropropane	C ₃ H ₅ Cl ₃	147.43	w								m								m					s	
Triethylamine (TEA)	C ₆ H ₁₅ N	101.19	0.02								0.1				0.1										
Trifluoromethyliodid	CF ₃ I	195.91									s			0.01										m	
Trimethylamine (TMA)	C ₃ H ₉ N	59.11	0.03	0.02								0.2			0.1										
1,2,4-Trimethylbenzene	C ₉ H ₁₂	120.19	0.2													0.5							0.3		
3,5,5-Trimethyl-2-cyclohexen-1-one / Isophorone	C ₉ H ₁₄ O	138.21	0.03	0.06						0.1			0.5							0.5					
1,3,5-Trioxane	C ₃ H ₆ O ₃	90.08	W	0.09											0.08				0.09						
Undecane	C ₁₁ H ₂₄	156.31	0.005	0.07																					
Vinyl acetate	C ₄ H ₆ O ₂	86.09	0.4								0.007		0.03								0.1				
Vinyl chloride	C ₂ H ₃ Cl	62.50														0.4				0.2				0.4	
m-Xylene	C ₈ H ₁₀	106.17	0.03	0.7											0.9								0.2	0.4	

Notification used in the chart:

= Measured detection limit – verified by LumaSense laboratory in Denmark

 ${\sf Relative\, strenght\, of\, absorption\, band:}$

vw = very week w = weak m = medium s = strong vs = very strong Calibration price group:

1 = UA0181 Automated Calibration

2 = UA0182 Advanced Calibration

3 = UA0183 Complex Calibration

Normal = Calculated detection limit

Converting concentration units

The detection limits listed on this wall chart are given in "parts per million" by volume (ppm) at 20°C and 1 atmosphere of pressure. These values can be converted into the concentration unit "mg/m³" by using equation (1) given in the box below.

For a gas at 20°C and at 1 atmosphere of pressure: (1)
Concentration (mg/m³) =
$$\frac{\text{Concentration (ppm) x Molec. Weight (g/mol)}}{24.04 \text{ I/mol}}$$

To Convert ppm to mg/m^3 (at 20°C and 1 atm.):

Reading from the chart, the detection limit at 20°C and 1 atmosphere pressure of Toluene is 0.5 ppm using the UA0974. The molecular weight of Toluene is 92.14 g/mol. Using equation (1) shown in the box above, the detection limit can be calculated in mg/m³:

Detection Limit = $\frac{0.5 \times 92.14}{24.04}$ = 1.92 mg/m³

To convert measured gas concentrations from mg/m³ to ppm (at T $^{\circ}\text{C}$ and P atm.):

Equation (1) can only be used to convert concentration units of a gas mea-sured at a pressure of 1 atmosphere and at a temperature of 20°C. If the gas is at a pressure of P atmospheres and its temperature is T Kelvin, then the conversion equation becomes:

Concentration (ppm) = Concentration (mg/m³) × Molar Volume (I/mol) Molec. Weight (g/mol)

Where:

Molec. Weight = molecular weight of the substance (in g/mol). This can be found in the Detection Limit Chart.

Molar Volume = is the volume occupied by one mole of an ideal gas at a specified temperature and pressure. Table 3 lists the molar volume of a gas at various temperatures and 1 atmosphere of pressure. Its value at a temperature of T K and a pressure of P atmosphere can be calculated from the following equation:

Molar Volume = RT/P, where:

T = temperature of the gas in K,

R = Gas Constant = 8.2054×10^{-2} liter atm. K⁻¹ mole⁻¹

P = pressure of the gas in atmospheres

Table 3. Molar Volume o	f an ideal gas	at 1 atmosph	here of pressi	ure at differen	t temperatur	es									
Temperature (°C)	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50
Molar Volume (l/mol)	20.76	21.17	21.58	21.99	22.40	22.81	23.22	23.63	24.04	24.45	24.86	25.27	25.68	26.07	26.50

Calculation of detection limits for different SIT settings

To calculate the detection limit at Sample Integration Times (SIT) other than 5 seconds, the following equation must be used:

Detection limit = Detection limit in chart x DLF

The factor DLF can be read in Table 1.

Example: Reading from the chart - the detection limit for Sulphur hexafluoride (SF₆) using the optical filter UA0988 is 0.006 ppm. Calculating the detection limit using SIT of 0.5 second and 50 seconds gives the following result: Detection limit SF6 (SIT of 0.5) = 0.006 ppm x 3.2 = 0.019 ppm

Detection limit SF6 (SIT of 50) = 0.006 ppm x 0.3 = 0.002 ppm

For international contact information, visit advancedenergy.com. LTI-info@aei.com +1.970.221.0108 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2019 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, Innova®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.