

ARTESYN CSU800AP-3-600 SERIES

800 Watts Distributed Power System

PRODUCT DESCRIPTION

Advanced Energy's Artesyn CSU800AP power supply is housed in a 1U high rack-mount enclosure measuring just 2.89 x 7.28 in (73.5 x 185.0 mm). This form factor is significantly narrower and shorter than that of similarly rated earlier generation power supplies — freeing up valuable system space — and is achieved by use of the latest power switching technology and high density component packaging techniques. This form factor conforms to the standard market's Common Redundant Power Supplies.

AT A GLANCE

Total Power

800 Watts

Input Voltage

90 to 264 Vac 180 to 300 Vdc

of Outputs

Single

80 PLUS PLATINUM

SPECIAL FEATURES

- 800W output power
- High power and short form factor
- 1U power supply
- High density design: 25W/in³
- Active power factor correction
- EN61000-3-2 harmonic compliance
- Inrush current control
- 80 PLUS® Platinum efficiency
- N+M redundant N+M ≤ 4
- Hot-pluggable
- Active current sharing
- Full digital control
- PMBusTM compliant
- Accurate input power reporting
- EN61000-4-5 surge level ±1KV/±2KV DM/CM
- Cold redundancy

- Reserve airflow option
- Conducted/Radiated EMI class A

SAFETY

- UL/cUL
- TUV + CB Report
- CE Mark
- CCC
- BSMI
- KC
- BIS
- EAC

TYPICAL APPLICATIONS

Industrial

MODEL NUMBERS

Standard	Output Voltage	Minimum Load	Maximum Load	Stand-By Supply	Air Flow Direction
CSU800AP-3-600	12.2 Vdc	1 A	66.7 A	12 Vdc@3 A	Normal (DC connector to handle)
CSU800AP-3-601	12.2 Vdc	1 A	66.7 A	12 Vdc@3 A	Reversed (Handle to DC connector)

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings	Table 1. Absolute Maximum Ratings							
Parameter	Models	Symbol	Min	Тур	Max	Unit		
Input Voltage AC continuous operation DC continuous operation	All models All models	V _{IN,AC} V _{IN,DC}	90 180		264 300	Vac Vdc		
Maximum Output Power	All models	P _{O,max}	-	-	800	W		
Isolation Voltage Input to output	All models		-	-	4242	Vdc		
Ambient Operating Temperature ¹	All models	T _A	0	-	55	°C		
Storage Temperature	All models	T _{STG}	-40	-	70	°C		
Humidity (non-condensing) Operating Non-operating	All models All models		0	-	90 95	% %		
Altitude Operating Non-operating	All models All models				5,000 15,200	m m		
MTBF Telcordia Method 1 Case Nominal Line and 50°C	All models		750	-	-	KHours		
Operating Life 100% load 50°C operating temperature Normal input voltage	All models		-	5	-	Years		

Note 1 - The maximum operating temperature (55°C) is to be derated by 1°C per 300 m above 2000 m.

3

Input Specifications

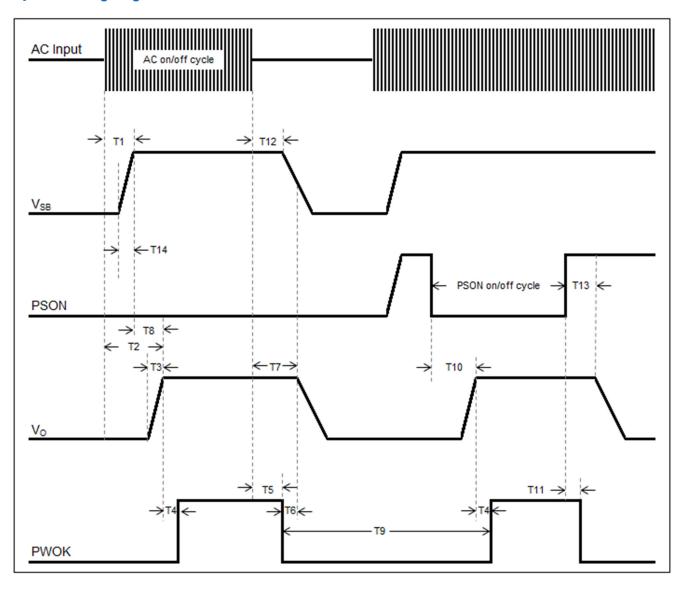
Table 2. Input Specifications						
Parameter	Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, AC	All	V _{IN,AC}	90	115/230	264	Vac
Operating Input Voltage, DC	All	$V_{\rm IN,DC}$	180	-	300	Vdc
Input AC Frequency	All	f _{IN,AC}	47	50/60	63	Hz
AC Turn On Voltage ¹	All		79	-	89	Vac
AC Turn Off Voltage ¹	All		75	-	85	Vac
AC Input Over Voltage Protection	All		285	-	300	Vac
AC Input Recovery	All		275	-	285	Vac
Maximum Input Current $(I_O = I_{O,max}, I_{SB} = I_{SB,max})$	V _{IN,AC} = 90 Vac / 60 Hz		-	-	11.7	А
	V _{IN,AC} = 180 Vac / 50 Hz	I _{IN,max}	-	-	5.8	А
No Load Input Power $(V_O = On, I_O = 0 A, I_{SB} = 0 A)$	All	P _{IN,no-load}	-	-	5	W
Harmonic Line Currents	All	THD	Per EN 61000-3-2			
Power Factor	I _O > 10% I _{O,max}	PF	0.90	-	-	
Startup Surge Current (Inrush) @ 25°C	V _{IN,AC} = 240 Vac	I _{IN,surge}	-	-	35	Apk
Input Fuse	Internal, L 5x20 mm, Quick Acting 12.5 A, 400 Vdc		-	-	12.5	А
Leakage Current to Earth Ground	V _{IN,AC} = 264 Vac f _{IN,AC} = 50 Hz		-	-	1.75	mA
Operating Efficiency ² @ 25 ⁰ C	$\begin{array}{l} V_{IN,AC} = 230 \; Vac \\ f_{IN,AC} = 50 \; Hz \\ I_O = 10\% \; I_{O,max} \\ I_O = 20\% \; I_{O,max} \\ I_O = 50\% \; I_{O,max} \\ I_O = 100\% \; I_{O,max} \end{array}$	ŋ	87 90 94 91	- - -	- - -	% % %
0.1.3	Phase Margin		45	-	-	Ø
System Stability	Gain Margin		-6	-	-	dB

Note 1 - Turn on/off hysteresis is ≥ 5 V. Note 2 - Measured excluding fan power.

Output Specifications

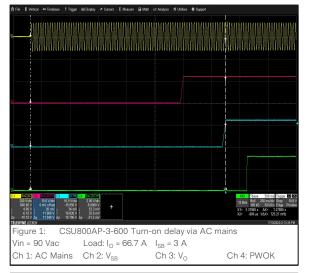
Table 3. Output Specifications								
Parameter	Condition	Symbol	Min	Тур	Max	Unit		
Output Regulation	Inclusive of set-point, temperature change,	Vo	11.8	12.2	12.6	Vdc		
	warm-up drift.	V_{SB}	11.4	12.0	12.6			
Output Ripple, pk-pk	Measure with a 0.1 μF ceramic capacitor in parallel with a 10 μF	Vo	-	-	120	mV _{PK-PK}		
Output Rippie, pr. pr.	tantalum capacitor, 10 to 20 MHz bandwidth	$V_{\rm SB}$	-	-	120	TTT V PK-PK		
Output Current	All	I _O	1	-	66.7	٨		
Output Current	All	I _{SB}	0	-	3	A		
Output Current Share Accuracy	20% to 100% I _O 10% to 20% I _O		-	-	5 10	% I ₀		
Output Voltage Minimum Current Share Loading	All		10	-	-	% I _{O,max}		
Number of Parallel Units ¹	Main output "12 V load share" connected		-	-	4			
Load Capacitance	Main output start up, stability, cold redundancy and dynamic load		2200	-	25000	uF		
	Standby output start up		100	-	3100	uF		
V _O Dynamic Response ²	60% load change, slew rate = 0.5 A/us	Vo	11.6	-	12.8	V		
Peak Deviation	1A load change, slew rate = 0.5 A/us	V _{SB}	11.4	-	12.8	V		

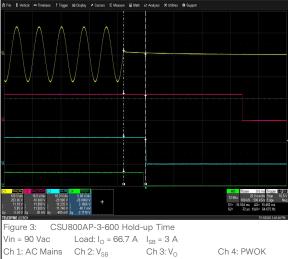
Note 1 - V_{SB} output does not use active current sharing. On paralleled units, the maximum current on V_{SB} output rail can not exceed the current of one unit. Note 2 - Recommend to test with 2200 uF capacitive load at the Vo output and 1000 uF at V_{SB} output. 1 A minimum current for transient load response testing only.

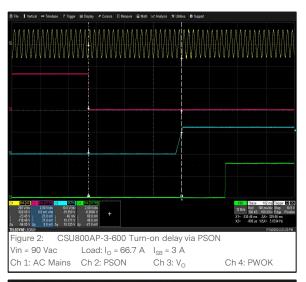


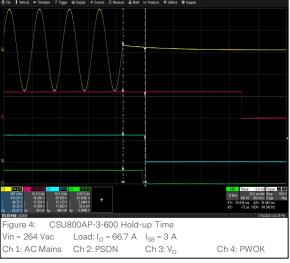
System Timing Specifications

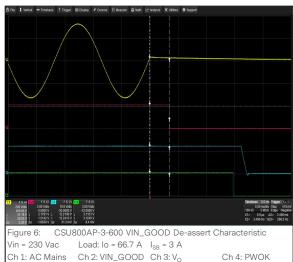
Table 4. System Timing Specifications							
Label	Parameter	Min	Тур	Max	Unit		
T1	Delay from AC being applied to $V_{\rm SB}$ being within regulation.	-	-	1500	mSec		
T2	Delay from AC being applied to all output voltages being within regulation.	-	-	3000	mSec		
Т3	Output voltage rise time for 12 V from 10 % to within regulation limits.	-	-	25	mSec		
T4	Delay from output voltages within regulation limits to PWOK asserted high at turn on.	100	-	500	mSec		
T5	Delay from loss of AC to de-assertion of PWOK.	10	-	-	mSec		
Т6	Delay from PWOK de-asserted to output voltages dropping out of regulation limits.	1	-	-	mSec		
Т7	Hold up time - time output voltages stay within regulation after the loss of AC at 100 % load. *The hold-up time will be >20 ms at 50 % load.	11	-	-	mSec		
Т8	Delay from standby voltage in regulation to output voltage in regulation at AC turn on.	50	-	1000	mSec		
Т9	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal.	100	-	-	mSec		
T10	Delay from PSON active to output voltages within regulation limits.	5	-	400	mSec		
T11	Delay from PSON deactive to PWOK de-asserted low.	-	-	5	mSec		
T12	Hold up time - time standby voltages stay within regulation after the loss of AC.	70	-	-	mSec		
T13	Delay from PSON de-asserted to power supply turning off.	-	-	5	mSec		
T14	Output voltage rise time for 12V _{SB} from 10% to within regulation limits.	-	-	70	mSec		

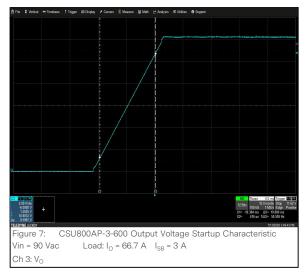


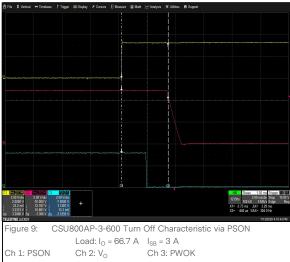

System Timing Diagram

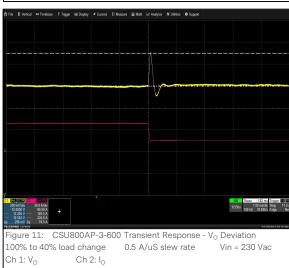


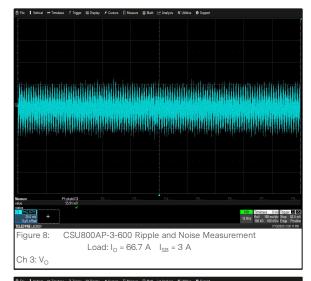

CSU800AP Series Performance Curves



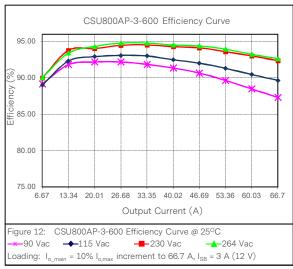









CSU800AP Series Performance Curves



Note 1 - All waveforms and data are tested on CSU800AP-3-400.

Advanced Energy.

Rev. 05.15.25_#1.5 advancedenergy.com

Protection Function Specifications

Input Fuse

CSU800AP series is equipped with an internal non user serviceable 12.5 A High Rupturing Capacity (HRC) 400 Vdc fuse to IEC 127 for fault protection on Line input.

Over Voltage Protection (OVP)

The power supply over voltage protection will be locally sensed. The power supply will shut down and latch off after an over voltage condition occurs. This latch will be cleared by toggling the PSON signal or by an AC power interruption. The values are measured at the output of the power supply's connector. The voltage will never exceed the maximum level when measured at the power connectors of the power supply's connector during any single point of failure. The voltage will never trip any lower than the minimum level when measured at the power connector. +12 V standby output will be auto-recovered after removing the OVP limit.

Parameter	Min	Nom	Max	Unit
Main Output Overvoltage	13.5	/	15	V
Standby Output Overvoltage	13.5	/	15	V

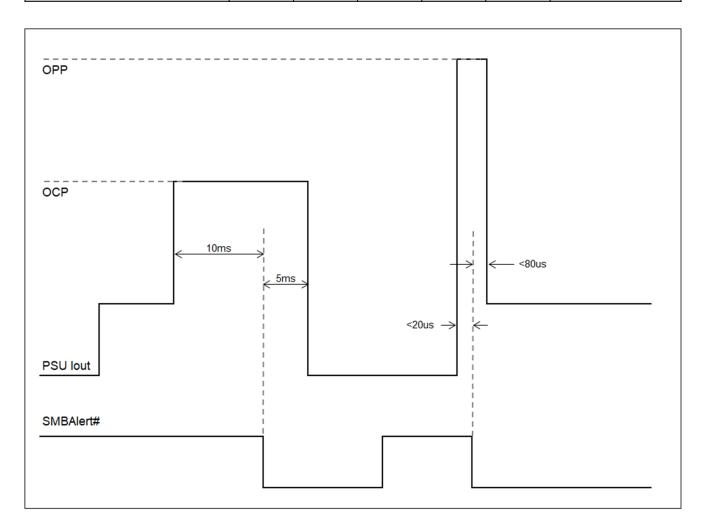
Over Temperature Protection (OTP)

The power supply will be protected against over temperature conditions caused by loss of fan cooling or excessive ambient temperature. In an OTP condition, the PSU will shut down. When the power supply temperature drops to within specified limits, the power supply will restore power automatically, while the +12 V standby output remains always on. The OTP circuit has built in the margin such that the power supply will not oscillate on and off due to temperature recovering condition. The OTP trip level has a minimum of 4° C of ambient temperature margin.

Over Current Protection (OCP)

The power supply has a current limit to prevent the outputs from exceeding the values shown in the table on the next page. If the current limits are exceeded, the power supply will shut down and latch off. The latch will be cleared by toggling the PSON signal or by an AC power interruption. The power supply will not be damaged from repeated power cycling in this condition. +12 V standby output will be auto-recovered after removing the OCP limit.

The over current protection for the main output is divided to three stages.

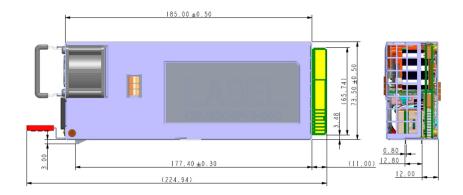

The first stage is the Over Current Warning (OCW). When the output current is within this range and lasts for longer than 20 Sec, the SMB Alert will assert within the 20 to 20.1 Sec and the power supply will shut down after the assertion of SMB Alert for longer than 1 Sec.

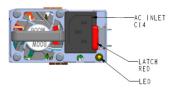
The second stage is the Over Current Protection (OCP). When the output current is within this range, the SMB Alert will assert within the 10 mSec and the power supply will shut down after the assertion of SMB Alert for longer than 5 mSec.

The third stage is the Over Power Protection (OPP). When the output current is within this range, the SMB Alert will assert in 100 μ Sec and the power supply will shut down after the assertion of SMB Alert for longer than 80 μ Sec.

Parameter		Thresholds		Timing		Protection Mode
r al allietei	Min	Nom	Max	Min	Max	Flotection Mode
V _O Output Overcurrent Warning	67 A	73.5 A	80 A	-	20 S	SMB Alert Assertion
V _O Output Overcurrent Protection	80 A	90 A	100 A	-	10 mS	Shut Down and Latch
V _O Output Overpower Protection	100 A	110 A	120 A	-	100 uS	Shut Down and Latch
V _{SB} Output Overcurrent Protection	4 A	-	5 A	-	-	Auto-recover

Mechanical Outlines (unit: mm)


The physical size of the power supply enclosure is $39/40 \text{ mm} \times 73.5 \text{ mm} \times 185 \text{ mm}$.


The power supply contains a single 40 mm fan with normal airflow direction or reversed airflow direction.

The power supply has an identical card edge output that interfaces with a 2x25 card edge connector in the system.

The AC plugs directly into the external face of the power supply.

Refer to the following figure. All dimensions are nominal.

Connector Definitions

AC Input Connector

Pin 1 – L

Pin 2 – N

Pin 3 - Earth Ground

Output Connector - Power Blades

A1-A9 – Main Output Return

A10-A18 – Main Output (V_O)

B1-B9 - Main Output Return

B10-B18 - Main Output (V_O)

Output Connector - Control Signals

A19 - SDA

A20 - SCL

A21 - PSON

A22 - SMB Alert

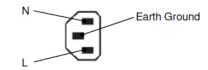
A23 - - VSENSE

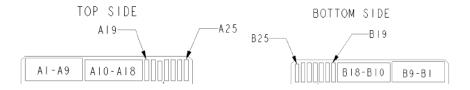
A24 - +VSENSE

A25 - PWOK

B19 - A0 (SMBus Address)

B20 - A1 (SMBus Address)

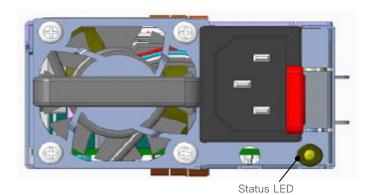

B21 - 12VSB


B22 - CR BUS

B23 - 12V Load Share

B24 - Present

B25 - VIN_GOOD


View from power supply output connector end

Power / Signal Mating Connectors and Pin Types

Table 5. Mating Connectors for CSU800AP Series						
Reference	On Power Supply	Mating Connector or Equivalent				
AC Input Connector	IEC320-C14	IEC320-C13				
Output Connector	Card-edge	Right Angle FCI Amphenol GPCEF4361411HHR FCI Amphenol 10035388 Vertical FCI Amphenol HPG36P14SVP011T P2P FCI Amphenol 10147875-111LF				

LED Indicator Definitions

One bi-color (green/amber) LED at the power supply front provides the status signal. The status LED conditions are shown on the following table.

Conditions	LED Status
Normal work.	Green
No AC power to all power supplies.	Off
PSU standby state AC present / Only 12 $\rm V_{SB}$ on or PSU in a cold standby state or always standby state.	1Hz Blink Green
AC cord unplugged with a second power supply in parallel still with AC input power.	Amber
Power supply critical event causing a shutdown. (Failure, over current, short circuit, over voltage, fan failure, over temperature)	Amber
Power supply warning events where the power supply continues to operate. (High temp, high power, high current, slow fan)	1Hz Blink Amber
Power supply firmware updating.	2Hz Blink Green

Weight

The CSU800AP series weight is 864.5 g/1.91 lbs.

EMC Immunity

CSU800AP series power supply is designed to meet the following EMC immunity specifications.

Table 6. Environmental Specifications	Table 6. Environmental Specifications					
Document	Description					
Class A of CISPR22 (EN55032) and FCC Part 15	Conducted and Radiated EMI Limits					
IEC/EN61000-3-2 Class A	Harmonics					
IEC/EN61000-3-3	Voltage Fluctuations					
IEC/EN61000-4-2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test: +/-15 KV air, +/-8 KV contact discharge. Performance - Criteria A					
IEC/EN61000-4-3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test. Performance - Criteria A					
IEC/EN61000-4-4	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrical fast transient/burst immunity test: +/-2 KV for AC power port. Performance - Criteria A					
IEC/EN61000-4-5	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Surge test: +/-2 KV common mode and +/-1 KV differential mode for AC ports. Performance - Criteria A					
IEC/EN61000-4-6	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Conducted Immunity 10 Vrms. Performance - Criteria A.					
IEC/EN61000-4-11	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Voltage dips and interruptions: Criteria B: >95% reduction for 10 mS; Criteria C: 30% reduction for 500 mS, or >95% reduction for 500 mS. Performance - Criteria C					
EN55024: 2010	Information technology equipment-immunity characteristics, limits and method of measurements					

Notes: Performance Criteria as defined by EN55024.

Performance Criteria A: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below specified performance level during intended use of operation.

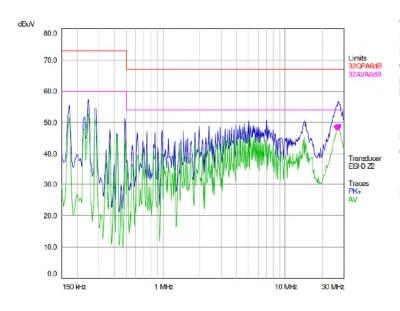
Performance Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below specified performance level during intended use of operation. Degradation of performance is allowed during the exposure to an electromagnetic phenomenon but no change of actual operating state is allowed.

Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

Safety Certifications

The CSU800AP series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand-alone product.

Table 7. Safety Certifications for CSU800AP Series Power Supply System						
Standard	Agency	Description				
UL 60950-1, 2nd Edition, 2014-10-14; CAN/CSA C22.2 No. 60950-1-07, 2nd Edition, 2014-10	UL + CUL	US and Canada Requirements				
EN 62368-1:2014+A11:2017	CE	European Requirements				
EN 62368-1:2014/A11:2017 IEC 62368-1:2014	CB Scheme	International Electrotechnical Commission				
CHINA CCC Approval		China Requirements				
IS 13252 (PART 1):2010 / IEC 60950-1:2005	BIS	India Requirements				



EMI Emissions

The CSU800AP series has been designed to comply with the Class A limits of EMI requirements of FCC Part 15 and CISPR 32 (EN 55032) for emissions and relevant sections of EN 55032:2011 for immunity. The unit is enclosed inside a metal box, tested at 800 W using resistive load with the cooling fan.

Conducted Emissions

The applicable standard for conducted emissions is EN 55032 (FCC Part 15). Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the supply fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature.

The CSU800AP series power supply has internal EMI filters to ensure the convertors' conducted EMI levels comply with EN 55032 (FCC Part 15) Class A limits. The EMI measurements are performed with resistive loads at maximum rated loading.

Sample of EN 55032 Conducted EMI Measurement at 110 Vac Input

Note: Red Line refers to Artesyn Quasi Peak margin, which is 6 dB below the CISPR international limit. Pink Line refers to the Artesyn Average margin, which is 6 dB below the CISPR international limit.

Conducted EMI emissions specifications of the CSU800AP series:

Parameter	Model	Symbol	Min	Тур	Max	Unit
FCC Part 15, class A	All	Margin	6	-	-	dB
CISPR 32 (EN55032), class A	All	Margin	6	-	-	dB

Radiated Emissions

Unlike conducted EMI, radiated EMI performance in a system environment may differ drastically from that in a stand-alone power supply. The shielding effect provided by the system enclosure may bring the EMI level from Class A to Class B. It is thus recommended that radiated EMI be evaluated in a system environment. The applicable standard is EN 55032 Class A (FCC Part 15). Testing AC-DC converters as a stand-alone component to the exact requirements of EN 55032 can be difficult because the standard calls for 1m lead to be attached to the input and outputs and aligned such as to maximize the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few AC-DC converters could pass. However, the standard also states that an attempt will be made to maximize the disturbance consistent with the typical application by varying the configuration of the test sample.

Operating Temperature

The CSU800AP series power supply will start and operate within stated specifications at an ambient temperature from 0° C to 55° C. The maximum operating temperature (55° C) is to be de-rated by 1° C per 300 m above 2000 m.

Forced Air Cooling

The CSU800AP series power supply includes internal cooling fans as part of the power supply assembly to provide forced air-cooling to maintain and control the temperature of devices and ambient temperature in the power supply to appropriate levels. The standard direction of airflow is from the DC connector end to the AC connector end of the power supply.

Below is the typical fan speed at various load conditions.

Loading	1A	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Speed (RPM)	2176	2176	2176	2176	2176	2176	5856	10494	14752	19008	21760

Storage and Shipping Temperature

The CSU800AP series power supply can be stored or shipped at temperatures between -40° C to $+70^{\circ}$ C and relative humidity up to 95% non-condensing.

Altitude

The CSU800AP series power supply will operate within specifications at altitudes up to 5,000 meters above sea level. The power supply will not be damaged when stored at altitudes of up to 15,200 meters above sea level.

Humidity

The CSU800AP series power supply will operate within specifications when subjected to a relative humidity up to 90% non-condensing. The CSU800AP series power supply can be stored in a relative humidity from up to 95% non-condensing.

Vibration

The CSU800AP series power supply will pass the following vibration specifications:

Non-Operating Random Vibration

Acceleration	3.13	gRMS		
Frequency Range	5 to 500		Hz	
Duration	10	Mins		
Direction	3 mutually perpendicular axis			
	FREQ (Hz)	SLOPE (db/oct)	PSD (g²/Hz)	
PSD Profile	5 /		0.000025	
F3D FIGHIE	10 to 50	/	0.0004	
	100	/	0.000025	

Operating Random Vibration

Acceleration	3.13	gRMS		
Frequency Range	5 to 500		Hz	
Duration	10		Mins	
Direction	3 mutually perpendicular axis			
	FREQ (Hz) SLOPE (db/oct)		PSD (g²/Hz)	
PSD Profile	5	/	0.01	
	20 to 500	/	0.02	

Shock

The CSU800AP series power supply will pass the following vibration specifications:

Non-Operating Half-Sine Shock

Acceleration	30	G	
Duration	11	mSec	
Pulse	Half-Sine		
Number of Shock	3 shocks in each of 6 directions		

Operating Half-Sine Shock

Acceleration	4	G		
Duration	22	mSec		
Pulse	Half-Sine			
Number of Shock	3 shocks in each of 6 directions			

POWER AND CONTROL SIGNAL DESCRIPTIONS

AC Input Connector

This connector supplies the AC mains to the CSU800AP series power supply.

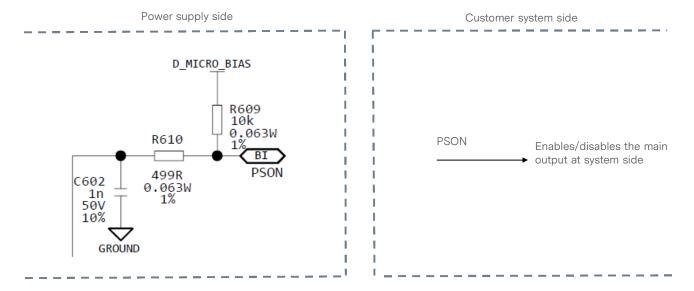
Pin 1 - L

Pin 2 - N

Pin 3 - Earth Ground

Output Connector - Power Blades

These pins provide the main output for the CSU800AP series power supply. The + Main Output (V_O) and the Main Output Return pins are the positive and negative rails, respectively, of the V_O main output of the CSU800AP series power supply. The Main Output (V_O) is electrically isolated from the power supply chassis.


A1-A9 – Main Output Return A10-A18 – Main Output (V_O) B1-B9 – Main Output Return B10-B18 – Main Output (V_O)

Output Connector - Control Signals

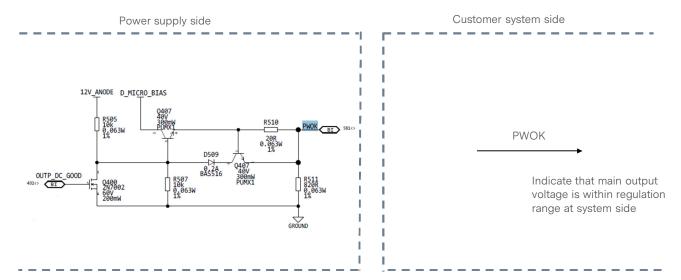
The CSU800AP series contains a 14 pins control signal header providing an analogue control interface, standby power and I²C interface signal connections.

PSON - (Pin A21)

This signal input pin controls the normal turn on and off of the main output of the CSU800AP series power supply. The power supply main output (V_O) will be enabled when this signal is pulled low below 1.0V. The power supply output (except V_{SB} output) will be disabled when this input is driven higher than 2.0V, or left open-circuited. The source current is 4mA maximum when V_{PSON} is low.

POWER AND CONTROL SIGNAL DESCRIPTIONS

SMBALERT - (Pin A22)


This signal indicates that the power supply is experiencing a problem that the user should investigate. The signal will activate in the case of critical component temperature reached a warning threshold, general failure, over-current, over-voltage, under-voltage, failed fan. This signal also indicates the power supply is reaching its end of life or is operating in an environment exceeding the specified limits. The signal will be asserted low below 0.4 V due to critical events or warning events and will be asserted high below 3.46 V when the status of power supply is normal. The sink current is 4 mA maximum when the signal is low and is 50 uA maximum when the signal is high. The rise time and fall time of the signal is 100 uS maximum. This signal is also to be asserted in parallel with LED turning solid amber or blink amber.

+VSENSE & -VSENSE - (Pins A23, A24)

+VSENSE and -VSENSE are the remote sense signals for 12 V main output voltage.

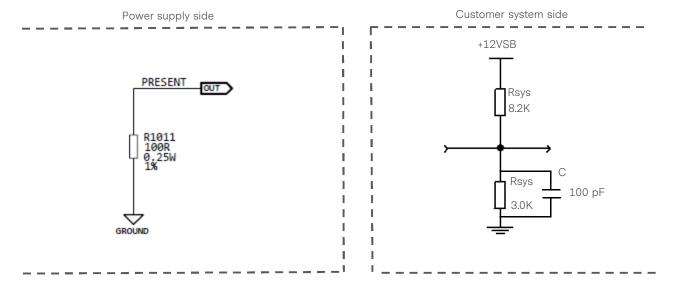
PWOK - (Pin A25)

The PWOK is an output signal driven high above 2.4 V by the power supply to indicate that all outputs are valid. If any of the power supply outputs fails below its regulation limits, this signal will be driven low below 0.4 V. The sink current is 400 uA maximum when the signal is low and is 2 mA maximum when the signal is high. The rise time and fall time of the signal is 100 uS maximum. The PWOK delay (Output in regulation to PWOK in regulation) is 100 ms minimum, 500 ms maximum. The power-down delay (PWOK out of regulation to output out of regulation) is 1 ms minimum.

CR_BUS - (Pin B22)

There is an additional signal defined supporting cold redundancy. This is connected to a bus shared between the power supplies and CR_BUS. This is a tri-state output signal of the power supply used to communicate a fault or Vout under-voltage level has occurred in one of the power supplies. This is used to power on all the power supplies in the system via the CR_BUS. When the signal is pulled high, it allows all power supplies in cold standby mode to go into cold standby state when the load share voltage is below the VCR_ON level. When the signal is left open on all power supplies, it forces all cold standby power supplies into the ON. The cold redundancy section showing the logic state of the CR_BUS signal depending upon the programmed configuration of the power supply in D0h, the operating state of the power supply, and the power supply fault status.

POWER AND CONTROL SIGNAL DESCRIPTIONS


12V Load Share - (Pin B23)

12V load share is a single wire bus signal used to help equalize the output current from two or more power supplies connected to a common load. 12V load share must be taken that with two or more power supplies sharing current, the percentage is the combined current for all power supplies, not one. The voltage on the 12V load share line represents the percentage of the rated output current each supply is providing. 0 V is equivalent to 0% load, 4 V is equivalent to 50% load, and 8 V is equivalent to 100% load. 12V load share transients during hot insertion or removal will not cause the supply output to go out of regulation.

Present - (Pin B24)

This signal is used to indicate to the system that a power supply is inserted in the power bay. This pin is internally pulled down to the standby return in the power supply with a 100 ohms resistor. The recommended pull-up resistor to 12 V_{SB} is 8.2 kohms with a 3.0 kohms pull down to ground. A 100 pF decoupling capacitor is also recommended.

- · Low PS is present
- High PS is removed from system

VIN_GOOD - (Pin B25)

VIN_GOOD is a fast-acting signal that indicates the state of the input voltage. During an initial start-up, and at any line condition, VIN_GOOD will go high above 2.4 V whenever the input voltage is within the operating range. The VIN_GOOD signal will also assert within 8 mS of an input recovery right after a missing cycle.

I²C Bus Signals

CSU800AP series power supply contains enhanced monitor and control functions implemented via the I²C bus. The CSU800AP series I²C functionality (PMBusTM and FRU data) can be accessed via the output connector control signals. The communication bus is powered either by the internal 3.3 V supply or from an external power source connected to the standby output (i.e. accessing an unpowered power supply as long as the standby output of another power supply connected in parallel is on).

If units are connected in parallel or in redundant mode, the standby outputs must be connected together in the system. Otherwise, the I²C bus will not work properly when a unit is inserted into the system without the DC source connected.

Note: PMBusTM functionality can be accessed only when the PSU is powered-up. Guaranteed communication I²C speed is 100 KHz.

A0, A1 (I2C Address Signals) - (Pins B19, B20)

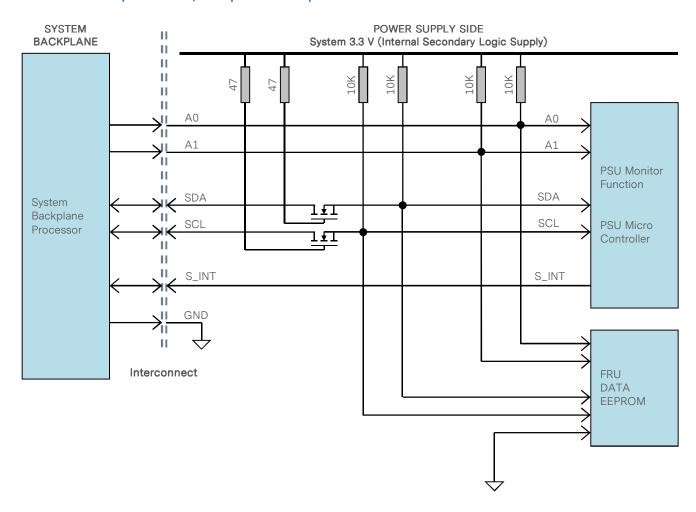
These input pins are the address lines A0 and A1 to indicate the slot position the power supply occupies in the power bay and define the power supply addresses for FRU data and PMBusTM data communication. This allows the system to assign different addresses for each power supply. During I²C communication between the system and power supplies, the system will be the master and the power supplies will be the slave.

They are internally pulled up to internal 3.3 V supply with a 10 Kohm resistor.

SDA, SCL (I²C Data and Clock Signals) - (Pins A19, A20)

 I^2C serial data and clock bus - these pins are internally pulled up to internal 3.3 V supply with a 10 Kohm resistor. These pins must be pulled-up by a 2K-10K ohm resistor to 3.3 V or 5 V at the system side.

I²C Bus Communication Interval


The interval between two consecutive I²C communications to the power supply must be at least 15 mS to ensure proper monitoring functionality.

I²C Bus Signal Integrity

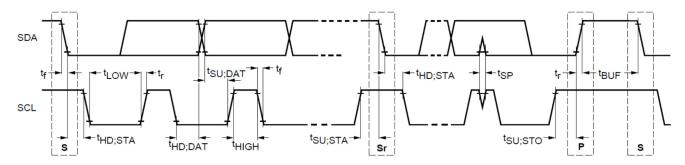
The noise on the I²C bus (SDA, SCL lines) due to the power supply will be less than 300 mV peak-to-peak. This noise measurement should be made with an oscilloscope bandwidth limited to 100 MHz. Measurements must be made at the power supply output connector with 10 Kohm resistors pulled up to standby output and 47 pF ceramic capacitors to standby output return.

I²C Bus Internal Implementation, Pull-ups and Bus Capacitances

I²C Bus - Recommended external pull-ups

Electrical and interface specifications of I²C signals (referenced to standby output return pin, unless otherwise indicated):

Parameter	Condition	Symbol	Min	Туре	Max	Unit
SDA, SCL Internal Pull-up Resistor		R _{int}	-	10	-	Kohm
SDA, SCL Internal Bus Capacitance		C _{int}	-	10	-	pF
Recommended External Pull-up Resistor	1 to 4 PSU	R _{ext}	-	2.2	-	Kohm


Logic Levels

CSU800AP series power supply I²C communication bus will respond to logic levels as per below:

Logic High: 3.3 V nominal (Spec is 2.1 V to 5.5 V)** Logic Low: 500 mV nominal (Spec is 800 mV max)**

**Note: Artesyn 73-769-001 I²C adapter was used.

Timings

Parameter	Symbol	Standard-Mode Specs		Actual Measured		Unit	
Farameter	Syllibol	Min	Max	Actual Measureu		Offic	
SCL clock frequency	f _{SCL}	0	100	9	0.9	KHz	
Hold time (repeated) START condition	t _{HD;STA}	4.0	-	4.	.74	uS	
LOW period of SCL clock	t _{LOW}	4.7	-	4.	.86	uS	
HIGH period of SCL clock	t _{HIGH}	4.0	-	4.84		uS	
Setup time for repeated START condition	t _{su;sta}	4.7	-	4.884		uS	
Data hold time	t _{HD;DAT}	0	3.65	0.2416		uS	
Data setup time	t _{su;dat}	250	-	4887		nS	
Rise time	t _r	-	1000	SCL = 669.6	SDA = 710.4	nS	
Fall time	t _f	-	300	SCL = 156.8	SDA = 146	nS	
Setup time for STOP condition	t _{su;sto}	4.0	-	5.02		uS	
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	95	5***	uS	

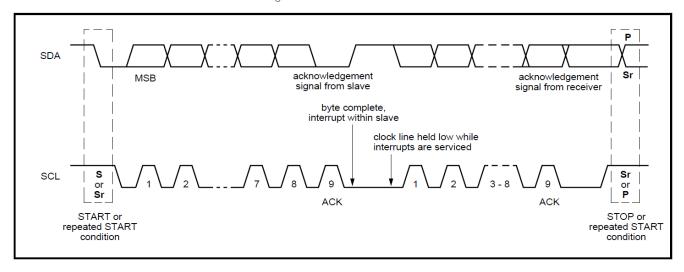
^{***}Note: Artesyn 73-769-001 $\ ^{12}$ C adapter (USB-to-I2C) and Universal PMBusTM GUI software was used.

Device Addressing

The CSU800AP series power supply will respond to supported commands on the I^2C bus that are addressed according to A1 and A0 pins of output connector.

Address pins are held HIGH by default via pulled up to internal 3.3 V supply with a 10 Kohm resistor. To set the address as "0", the corresponding address line needs be pulled down to logic ground level. Below tables show the address of the power supply with A0 and A1 pins set to either "0" or "1".

PSU Slot	Slot ID Bits		PMBus™ Address	EEPROM (FRU)	
F 30 310t	A1	A0	FINIDUS AUUICSS	EEFROM (FRO)	
1	0	0	0xB0/B1	0xA0/A1	
2	0	1	0xB2/B3	0xA2/A3	
3	1	0	0xB4/B5	0xA4/A5	
4	1	1	0xB6/B7*	0xA6/A7*	



^{*}Note: Default PMBus $^{\text{TM}}$ address when A0 and A1 are left open.

I²C Clock Synchronization

The CSU800AP series power supply applies clock stretching. An addressed slave power supply holds the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The system master that is communicating with the power supply will attempt to raise the clock to transfer the next bit but must verify that the clock line was actually raised. If the power supply is clock stretching, the clock line will still be low (because the connections are open-drain).

The maximum time-out condition for clock stretching for CSU800AP series is 35 milliseconds.

Cold Redundancy

The CSU800AP series power supply supports capabilities for cold redundancy. This capability helps improve the efficiency and iTHD of the power subsystem when more than one power supply is used in a system. Cold redundancy uses the PMBusTM manufacturer specific command area to define commands for the system to configure the power supplies for cold redundancy.

Overview

A system in 1+1, 2+1, 3+1 or 2+2 redundant mode configuration may not be operated at the optimum efficiency especially when the load is <50% of each power supply's capacity. The cold redundancy mode addresses this condition, where certain power supplies in a system can go into "cold standby" mode, thereby consuming the least amount of power and still be redundant.

Each power supply in this system will have a preprogrammed threshold for output current by which that power supply may determine whether to be actively providing power to the system, or be in cold standby state. A CR_BUS signal that connects all power supplies in the system, also indicates whether it is safe for power supplies in cold redundant mode to enter into cold standby state. The CR_BUS signal prevents power supplies from going into cold standby mode whenever there isn't any active power supply.

The following table shows the state of the power supplies programmed for cold standby mode based on the condition of the CR_BUS signal and the load share bus voltage.

Logic Matrix for Cold Standby Power Supplies:

CR_BUS	Load Share	Cold Standby Power Supply State (s)
High	< VCR_ON	Cold Standby
Low	< VCR_ON	Active
High	> VCR_ON	Active
Low	> VCR_ON	Active

Note: VCR_ON is the voltage threshold set inside the power supplies configured for cold standby which tells them to power down into cold standby state when the load share voltage is less than VCR_ON.

When CR_BUS is asserted (or goes low), all power supplies in the system should go active and immediately provide power to the system.

SMBus Commands for Cold Redundancy

Configuring Cold Redundancy with Cold_Redundancy_Config (D0h)

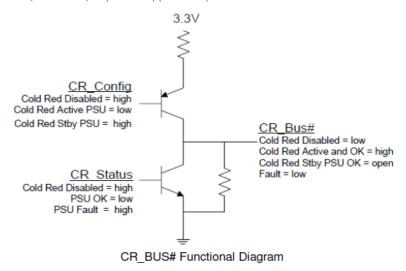
The PMBusTM manufacturer specific command MFR_SPECIFIC_00 is used to configure the operating state of the power supply related to cold redundancy. This command for Cold_Redundancy_Config is D0h. The table below shows the configuration of the power supply based on the value in the Cold_Redundancy_Config register. PEC is used for read/write of this register.

Cold Redundancy Configuration Table

	Cold_Redundancy_Config (D0h)					
Value	State	Description				
00h	Standard Redundancy (Default Power on State)	Turns the power supply into standard redundant load sharing mode. The power supply's CR_BUS signal shall be OPEN but still pull the bus low if a fault occurs.				
01h	Cold Redundant Active	Defines this power supply to be the one that is always ON in a cold redundancy configuration.				
02h	Cold Standby 1	Defines the power supply that is the first to turn on in a cold redundant configuration as the load increases. This power supply usually has the lowest current threshold.				
03h	Cold Standby 2	Defines the power supply that is the second to turn on in a cold redundant configuration as the load increases.				
04h	Cold Standby 3	Defines the power supply that is the third to turn on in a cold redundant configuration as the load increases.				
05h	Always Cold Standby	Defines this power supply to be always in cold redundant configuration no matter what the load condition.				
06h-FFh	Reserved					

When the CR_BUS transitions from a high to a low state; each PSU programmed to be in cold standby state shall be put into standard redundancy mode (Cold_Redundancy_Config = 00h). For the power supplies to enter cold redundancy mode the system must re-program the power supplies using the Cold_Redundancy_Config command.

Cold Redundant Signal (CR_BUS)


There is an additional signal defined supporting cold redundancy. This is connected to a bus shared between the power supplies' CR_BUS. This is a tri-state output signal of the power supply used to communicate a fault or Vout under-voltage level has occurred in one of the power supplies. This is used to power on all the power supplies in the system via the CR_BUS. When the signal is pulled high, it allows all power supplies in cold standby mode to go into cold standby state when the load share voltage is below the V_{CR_ON} level. When the signal is left open on all power supplies, it forces all cold standby power supplies into the ON. Below is a table showing the logic state of the CR_BUS signal depending upon the programmed configuration of the power supply in D0h, the operating state of the power supply, and the power supply fault status.

Cold Redundancy State Table

Cold Redundant Config	Operating State	Power Supply Fault Status	CR_Bus#
Active	On	OK	High
Cold Standby 1,2,3	On	OK	Open
Cold Standby 1,2,3	Cold Standby	OK	Open
Active	Off	Fault	Low
Cold Standby 1,2,3	On	Fault	Low
Cold Standby 1,2,3	Cold Standby	Fault	Low

The CR_Status input is based on both the Cold_Redundancy_Config register as well as the fault state of the power supply. The resulting output is a tri-state output. The output is low when there is a fault in any power supply or when cold redundancy is disabled. The output is high only when a power supply is programmed for the cold redundancy active mode and it is functioning OK. The output is open only when the power supply is programmed for cold redundant standby mode and is functioning OK. This means that there needs to be one good power supply programmed for active cold redundant mode to allow power supply to function in cold standby mode; otherwise, all power supplies will power ON and come out of cold redundant mode.

CR_BUS Signal Characteristic

Signal Type	Active: Tri-State Output Cold Standby: Input Signal				
Signal Type	Min	Max			
Logic Level Low (Power Supply ON)	0 V	0.4 V			
Logic Level High (Power Supply OFF)	2.4 V	3.46 V			
Source Current, Cold Amber = High	2 mA	-			
Sink Current, Cold Amber = Low	400 μΑ	-			
Cold Amber Fault Delay	-	10 uS			
Cold Amber Turn On Delay	-	100 uS			

BMC Requirements

The BMC uses the Cold_Redundancy_Config command to configure the power supply's roll in cold redundancy and to enabled/disable cold redundancy. It is recommended that the BMC schedules a rolling change for which PSU is the Active, Cold Stby 1, Cold Stby 2, and Cold Stby 3 power supply. This allows for equal loading across power supply over their life.

Black Box

The power supply can store PMBus and other data into non-volatile memory upon a critical failure that caused the power supply to shut down. The data can be accessed via the PMBus interface by applying power to the 12V_{SB} pins. No AC power needs to be applied to the power supply.

Data is saved to the black box for the following fault events:

- General fault
- Over voltage on output
- Over current on output
- Loss of AC input
- Input voltage fault
- Fan failure
- Over temperature

Black Box Process:

- 1) System writes system tracking data to the power supply RAM at power ON.
- 2) System writes the real time clock data to the PSU RAM once every ~5 minutes.
- 3) Power supply tracks the number of PSON and AC power cycles in FLASH.
- 4) Power supply tracks ON time in FLASH.
- 5) Power supply loads warning and fault event counter data from FLASH into RAM.
- 6) Upon a warning event, the PSU will increment the associated counter in RAM.
- 7) Upon and fault event, the PSU will increment the associated counter in RAM.
- 8) Upon a fault event that causes the PSU to shut down, all event data in the PSU's RAM is saved to event data location N in the power supply's FLASH. This data includes the real time clock, the number of AC & PSON power cycles, PSU ON time, warning event counters and fault event counters.

Commands:

Name: MFR_BLACKBOX

Format: Read Block with PEC (238 bytes)

Code: DCh

	Item	Number of Bytes	Description
System tracking data	System top assembly number	10	The system will write its Intel part number for the system top assembly to the power supply when it is powered ON. This is 9 ASCII characters.
	System serial number	10	The system will write the system serial number to the power supply when it is powered ON. This includes the serial number and date code.
	Motherboard assembly number	10	The system will write the motherboard Intel part number for the assembly to the power supply when it is powered ON. This is 9 ASCII characters.
	Motherboard serial number	10	The system will write the motherboard's serial number to the power supply when it is powered ON. This includes the serial number and date code.
	Present total PSU ON time	3	Total on time of the power supply with PSON asserted in minutes. LSB = 1 minute.
	Present number of AC power cycles	2	Total number of times the power supply powered OFF then back ON due to loss of AC power. This is only counted when the power supply's PSON signal is asserted. This counter will stay at FFFFh once the max is reached.
	Present number of PSON power cycles	2	Total number of times the power supply is powered OFF then back ON due to the PSON signal de-asserting. This is only counted when AC power is present to the power supply. This counter will stay at FFFFh once the max is reached.
Power supply event data (N)		38	Most recent occurrence of saved black box data.
Time stamp			The power supply will track these time and power cycle counters in RAM. When the a black box event occurs the data is saved into the black box.
	Power supply total power on time	3	Total on time of the power supply in minutes. LSB = 1 minute.
	Real time clock data from system (Reserved for future use)	4	This time stamp does not need to generated by the power supply. The system rights a real time clock value periodically to the power supply using the MFR_REAL_TIME command. Format is based on IPMI 2.0. Time is an unsigned 32-bit value representing the local time as the number of seconds from 00:00:00, January 1, 1970. This format is sufficient to maintain time stamping with 1 second resolution past the year 2100. This is based on a long standing UNIX-based standard for time keeping, which represents time as the number of seconds from 00:00:00, January 1, 1970 GMT. Similar time formats are used in ANSI C.
	Number of AC power cycles	2	Number of times the power supply powered OFF then back ON due to loss of AC power at the time of the event. This is only counted when the power supply's PSON signal is asserted.
	Number of PSON power cycles	2	Number of times the power supply is powered OFF then back ON due to the PSON signal de-asserting at the time of the event. This is only counted when AC power is present to the power supply.

	Item	Number of Bytes	Description
			The power supply will save these PMBus values into the black box when a black box event occurs. Fast events may be missed due to the filtering effects of the PMBus sensors.
	STATUS_WORD	2	
	STATUS_IOUT	1	
	STATUS_INPUT	1	
	STATUS_TEMPERTATURE	1	
	STATUS_FAN_1_2	1	
PMBus	READ_VIN	2	
	READ_IIN	2	
	READ_IOUT	2	
	READ_TEMPERATURE_1	2	
	READ_TEMPERATURE_2	2	
	READ_FAN_SPEED_1	2	
	READ_PIN	2	
	READ_VOUT	2	
			The power supply will track the total number for each of the following events. These value will be saved to the black box when a black box event occurs. Once a value has reached 15, it will stay at 15 and not reset.
	AC shutdown due to under voltage on input	Lower ½	
	Thermal shutdown	Upper ½	
	Over current or over power shutdown on output	Lower ½	The power supply will save a count of these critical events to non-volatile memory each time they occur. The counters will
	General failure shutdown	Upper ½	increment each time the associated STATUS bit is asserted.
Event counters	Fan failure shutdown	Lower ½	
	Shutdown due to over voltage on output	Upper ⅓	
	Input voltage warning; no shutdown	Lower ½	The power supply will save into RAM a count of these
	Thermal warning; no shutdown	Upper ½	warning events. Events are count only at the initial assertion of the event/bit. If the event persists without clearing the bit
	Output current power warning; no shutdown	Lower ½	the counter will not be incremented. When the power supply shuts down it will save these warning event counters to non-volatile memory. The counters will increment each time the
	Fan slow warning; no shutdown	Upper ½	associated STATUS bit is asserted.
Power s	supply event data (N-1)	38	
Powers	supply event data (N-2)	38	
Power s	supply event data (N-3)	38	
Power s	supply event data (N-4)	38	

Name: MFR_REAL_TIME_BLACK_BOX Format: Write/Read Block with PEC (4 bytes)

Code: DDh

The system will use this command to periodically write the real time clock data to the power supply.

Format is based on IPMI 2.0. Time is an unsigned 32-bit value representing the local time as the number of seconds from 00:00:00, January 1, 1970. This format is sufficient to maintain time stamping with 1 second resolution past the year 2100.

This is based on a long standing UNIX-based standard for time keeping, which represents time as the number of seconds from 00:00:00, January 1, 1970 GMT. Similar time formats are used in ANSI C.

Name: MFR_SYSTEM_BLACK_BOX

Format: Write/Read Block with PEC (40 bytes). Low byte first.

Code: DEh

The system uses this command to write the following data to the PSU.

Item	Bytes	
System top assembly number	1–10	Low bytes
System serial number	11–20	
Motherboard assembly number	21–30	
Motherboard serial number	31–40	High bytes

Name: MFR_BLACKBOX_CONFIG Format: Read/Write Byte with PEC

Code: DFh

Bit	Value	Description
0	0 = disable black box function 1 = enable black box function	Writing a '1' enables the power supply with black box function. Writing a '0' disables the power supply black box function. The state of MFR_BLACKBOX_CONFIG will be saved in non-volatile memory so that it is not lost during power cycling. Intel will receive the power supply with the black box function enabled; bit 0 = '1'.

Name: MFR_CLEAR_BLACKBOX Format: Send Byte with PEC

Code: E0h

The MFR_CLEAR_BLACKBOX command is used to clear all black box records simultaneously. This command is write only. There is no data byte for this command.

FRU (EEPROM) Data

The FRU (Field Replaceable Unit) data format is compliant with the Intel IPMI v1.0 specification.

The CSU800AP series power supply uses 1 page of EEPROM for FRU purpose. A page of EEPROM contains up to 256 byte-sized data locations.

Where: OFFSET -The OFFSET denotes the address in decimal format of a particular data byte within

CSU800AP series power supply EEPROM.

VALUE -The VALUE details data written to a particular memory location of the EEPROM.

DEFINITION -The contents DEFINITION refers to the definition of a particular data byte.

CSU800AP-3-600 FRU (EEPROM) Data:

OF	FSET	DEFINITION	SPEC	VALUE
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)
	•	COMMON HEADER, 8 BYTES		
0	00	FORMAT VERSION NUMBER (Common Header) 7:4 - Reserved, write as 0000b 3:0 - Format version number = 1h for this specification	1	01
1	01	INTERNAL USE AREA OFFSET (Not required, do not reserve)	0	00
2	02	CHASSIS INFO AREA OFFSET (Not required, do not reserve)	0	00
3	03	BOARD INFO AREA OFFSET (Not required, do not reserve)	0	00
4	04	PRODUCT INFO AREA OFFSET	1	01
5	05	MULTI RECORD AREA OFFSET	10	0A
6	06	PAD (Not required, do not reserve)	0	00
7	07	ZERO CHECK SUM (256 - (Sum of bytes 0 to 6))	244	F4
		PRODUCT INFORMATION AREA, 72 BYTES		
8	08	FORMAT VERSION NUMBER (Product Info Area) 7:4 - Reserved, write as 0000b 3:0 - Format version number = 1h for this specification	1	01
9	09	PRODUCT INFO AREA LENGTH (In multiples of 8 bytes)	9	09
10	0A	Language (English)	25	19
11	OB	MANUFACTURER NAME Type/Length (C7H) 7:6 - (11)b, 8-bit ASCII + Latin 1, 5:0 - (000111)b, 7-byte allocation	199	C7
12 13 14 15 16 17	0C 0D 0E 0F 10 11	MANUFACTURER'S NAME 7 bytes sequence "A"= 41h "R"= 52h "T"= 54h "E"= 45h "S"= 53h "Y"= 59h "N"= 4Eh	65 82 84 69 83 89 78	41 52 54 45 53 59 4E
19	13	PRODUCT NAME Type/Length (D0H) Type = "ASCII+Latin 1" = (11)b length = 16 bytes = (010000)b	208	D0

CSU800AP-3-600 FRU (EEPROM) Data:

OFF	SET	DEFINITION	SPEC '	VALUE
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)
20 21 22 23 24 25 26 27 28 29 30 31 32 33	14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21	(REMARKS) Product Name, 16 bytes sequence "CRPS800W" In Decimal = 067d, 082d, 080d, 083d, 056d, 048d, 048d, 087d, 032d, 032d, 032d, 032d, 032d, 032d ln Hex = 43H, 52H, 50H, 53H, 38H, 30H, 30H, 57H, 20H, 20H, 20H, 20H, 20H, 20H, 20H, 20	67 82 80 83 56 48 48 87 32 32 32 32 32 32 32 32	43 52 50 53 38 30 30 57 20 20 20 20 20 20 20
35 36	23	PRODUCT PART/MODEL NUMBER Type/Length (CFH) Type = "ASCII+Latin 1" = (11)b length = 15 bytes = (001111)b	32 207	20 CF
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33	Part / Model Number "CSU800AP-3-600" In Decimal = 067d, 083d, 085d, 056d, 048d, 048d, 065d, 080d, 045d, 051d, 045d, 054d, 048d, 048d, 032d In Hex = 43H, 53H, 55H, 38H, 30H, 30H, 41H, 50H, 2DH, 33H, 2DH, 36H, 30H, 30H, 20H	67 83 85 56 48 48 65 80 45 51 45 54 48 48	43 53 55 38 30 30 41 50 2D 33 2D 36 30 30 20
52	34	PRODUCT VERSION NUMBER Type/Length (C2h) Type = "ASCII+Latin 1" = (11)b length = 2 bytes = (000010)b	194	C2
53 54	35 36	PRODUCT VERSION NUMBER BYTES, 2 bytes sequence "XX"	XX XX	XX XX
55	37	PRODUCT SERIAL NUMBER Type/Length Type = "ASCII+Latin 1" = (11)b length = 13 bytes = (001101)b	205	CD
56 57 58 59 60 61 62 63 64 65 66 67 68	38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44	PRODUCT SERIAL NUMBER BYTES, 13 bytes sequence "XXXXXXXXXXXX" Asset Tag Type/Length Type = "ASCII+Latin 1" = (11)b length = 0 byte = (000000)b	XX XX XX XX XX XX XX XX XX XX XX XX XX	XX XX XX XX XX XX XX XX XX XX XX XX
70	46	FRU File ID Type/Length Type = "ASCII+Latin 1" = (11)b length = 0 byte = (000000)b	192	C0

OFF	SET	DEFINITION	SPEC	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)		
71	47	C1h (Type/Length byte encoded to indicate no more info fields)	193	C1		
72	48	00h - Any remaining unused space	0	00		
73	49		0	00		
74	4A		0	00		
75 76	4B	00h - Any remaining unused space	0	00		
76	4C 4D		0	00 00		
78	4E		0	00		
79	4F	ZERO CHECK SUM (256 - (sum of bytes 8 to 78)) per unit				
		Zero Check Sum: should follow check sum calculation as per IPMI v1.3 specs				
		Multi Record Area, 72 Bytes				
		Power Supply Record Header				
80	50	Record type = 00 for power supply	0	00		
81	51	End of list / Record format version number	2	02		
82	52	Record length of power supply record	24	18		
83	53	Record CHECKSUM of power supply record (256 - (sum of bytes 85 to 108))				
84	54	Header CHECKSUM of power supply record header (256 - (sum of bytes 80 to 83))				
		Power Supply Record				
85	55	Overall Capacity of the Power Supply	32	20		
86	56	2 bytes sequence CSU800AP-3 = 800W 800W = 0320H(LSB First)	3	03		
87	57 50	Peak VA, 1500VA = 05DCH	220	DC		
88	58	2 bytes sequence	5	05		
89	59	Inrush Current, 35A In Decimal = 35 In Hex = 23H	35	23		
		Inrush Interval, 5mS				
90	5A	In Decimal = 5 In Hex = 05H	5	05		
		Low End Input Voltage Range 1(10mV), (90V / 10mV) 9000 = 2328H				
91	5B	2 bytes sequence In Decimal = 40 In Hex = 28H	40	28		
92	5C	In Decimal = 35 In Hex = 23H	35	23		
		High End Input Voltage Range 1(10mV), (264V/10mV) 26400= 6720H				
		2 bytes sequence				
93	5D	In Decimal = 32 In Hex = 20H	32	20		
94	5E	In Decimal = 103 In Hex = 67H	103	67		
95 96	5F 60	Low End Input Voltage Range 2(10mV),	0	00 00		
96	61	(Zero if single range) (signed) High End Input Voltage Range 2(10mV),	0	00		
98	62	(Zero if single range) (signed)	0	00		
99	63	Low End Input Frequency Range, 47Hz = 2FH	47	2F		
100	64	Low End Input Frequency Range, 63Hz = 3FH	63	3F		
101	65	AC Dropout Tolerance in ms, 10mS= 0AH	10	0A		

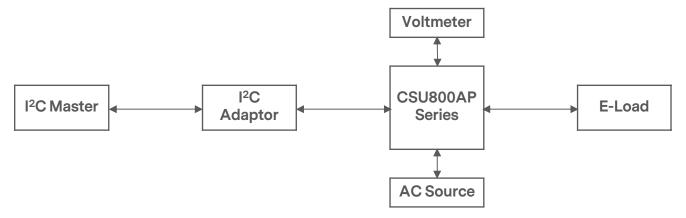
CSU800AP-3-600 FRU (EEPROM) Data:

OF	FSET	DEFINITION	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)	
102	66	Binary Flags: For each of the following binary flags No = 0, Yes = 1. Bits 7-5: RESERVED, WRITE AS 000B Bit 4: Tachometer pulses per rotation / Predictive fail polarity BIT = 0 Bit 3: Hot swap / Redundancy support BIT = 1 Bit 2: Auto switch support BIT = 1 Bit 1: Power factor correction support BIT = 1 Bit 0: Predictive fail support BIT = 0	14	0E	
103 104 105	67 68 69	Peak Wattage and Sustained Time, (Set for 960 Watts / 15 Sec) Bits 15:12 - Hold up time in seconds Bits 11:0 - Peak capacity (watts) (LSB First) [FFFh = unspecified] In Decimal = 192 In Hex = C0H (LSB First) In Decimal = 243 In Hex = F3H Combined Wattage,	192 243 0	C0 F3 00	
103 106 107	6A 6B	No combined voltages for power supply	0	00	
108	6C	Predictive Fail Tachometer Lower Threshold, not applicable. Predictive failure is not supported.	0	00	
		12V DC OUTPUT RECORD HEADER			
109 110 111 112 113	6D 6E 6F 70 71	Record type = 09 for dc output record End of list / Record format version number for 12V DC output record Record length of 12V DC output record Record CHECKSUM of 12V DC output record (256 - (sum of bytes 114 to 126)) Header CHECKSUM of 12V DC output record header (256 - (sum of bytes 109 to 112))	9 2 13	09 02 0D	
		12V DC OUTPUT RECORD			
114	72	Output Information, 001 = 01H Bit 7: Standby information = 0B Bits 6-5: Reserved, write as 00B Bit 4: Current units, 0b = 10 mA, Bits 3-0: Output number 1 = 001B	1	1	
115 116	73 74	Nominal Voltage (10mV), (12.00V / 10 mV => 1200 = 04B0H) 2 bytes sequence In Decimal = 176 In Hex = B0H In Decimal = 4 In Hex = 04H	176 4	B0 04	
117 118	75 76	Maximum Negative Voltage Deviation (10 mV), (11.40 V / 10 mV => 1140 = 0474H) 2 bytes sequence In Decimal = 116 In Hex = 74H In Decimal = 4 In Hex = 04H	116 4	74 04	
119 120	77 78	Maximum Positive Voltage Deviation (10 mV), (12.60 V / 10 mV => 1260 = 04ECH) 2 bytes sequence In Decimal = 236 In Hex = ECH In Decimal = 4 In Hex = 04H	236 4	EC 04	

OFFSET		DEFINITION	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)	
121 122	79 7A	Ripple and Noise pk-pk (mV), 120 = 78H 2 bytes sequence In Decimal = 120 In Hex = 78H In Decimal = 0 In Hex = 00H	120 0	78 00	
123 124	7B 7C	Minimum Current Draw (10 mA), 0 mA = 00H 2 bytes sequence In Decimal = 0 In Hex = 00H In Decimal = 0 In Hex = 00H	0	00	
125 126	7D 7E	Maximum Current Draw (10 mA), (66.7 A / 10 mA => 6670 = 1A0EH) 2 bytes sequence In Decimal = 14 In Hex = 0EH In Decimal = 26 In Hex = 1AH	14 26	0E 1A	
		12VSB OUTPUT RECORD HEADER			
127 128 129 130	7F 80 81 82	Record type = 01 for DC output record End of list /record format version number for 12 VSB output record Record length of 12VSB output record Record CHECKSUM of 12 VSB output record (256 - (sum of bytes 132 to 144) Header CHECKSUM of 12 VSB output record header (256 - (sum of bytes 127 to 130)	1 130 13	01 82 0D	
		12VSB OUTPUT RECORD			
132	84	Output Information, 130 = 82H Bit 7: Standby information = 1B Bits 6-4: Reserved, write as 000B Bits 3-0: Output number 2 = 0010B	132	82	
133 134	85 86	Nominal Voltage (10 mV), (12.00 V / 10 mV => 1200 = 04B0H) 2 bytes sequence In Decimal = 176 In Hex = B0H In Decimal = 4 In Hex = 04H	176 4	B0 04	
135 136	87 88	Maximum Negative Voltage Deviation (10 mV), (11.40 V / 10 mV => 1140 = 0474H) 2 bytes sequence In Decimal = 116 In Hex = 74H In Decimal = 4 In Hex = 04H	116 4	74 04	
137 138	89 8A	Maximum Positive Voltage Deviation (10 mV), (12.60 V / 10 mV => 1260 = 04ECH) 2 bytes sequence In Decimal = 236 In Hex = ECH In Decimal = 4 In Hex = 04H	236 4	EC 04	
139 140	8B 8C	Ripple and Noise pk-pk (mV), 120 = 78H 2 bytes sequence In Decimal = 120 In Hex = 78H In Decimal = 0 In Hex = 00H	120 0	78 00	
141 142	8D 8E	Minimum Current Draw (mA), 0 mA = 00H 2 bytes sequence In Decimal = 0 In Hex = 00H In Decimal = 0 In Hex = 00H	0	00 00	
143 144	8F 90	Maximum Current Draw (mA), (3 A / 1 mA => 3000 = 0BB8H) 2 bytes sequence In Decimal = 184 In Hex = B8H In Decimal = 11 In Hex = 0BH	184 11	B8 0B	

OFF	SET	DEFINITION	SPEC VALUE		
(DEC) (HEX)		(REMARKS)	(DEC)	(HEX)	
145	91	Reserved. Default value is 0.	0	00	
146	92	Reserved. Default value is 0.	0	00	
147	93	Reserved. Default value is 0.	0	00	
148	94	Reserved. Default value is 0.	0	00	
149	95	Reserved. Default value is 0.	0	00	
150	96	Reserved. Default value is 0.	0	00	
151	97	Reserved. Default value is 0.	0	00	
152	98	(98h-FFh is reserved. Default value is 0.)	0	00	
153	99		0	00	
154	9A		0	00	
155	9B		0	00	
156	9C		0	00	
157	9D		0	00	
158	9E		0	00	
159	9F		0	00	
160	A0		0	00	
161	A1		0	00	
162	A2		0	00	
163	А3		0	00	
164	A4		0	00	
165	A5		0	00	
166	A6		0	00	
167	A7		0	00	
168	A8		0	00	
169	A9		0	00	
170	AA		0	00	
171	AB		0	00	
172	AC		0	00	
173	AD		0	00	
174	AE		0	00	
175	AF		0	00	
176	В0		0	00	
177	B1		0	00	
178	B2		0	00	
179	В3		0	00	
180	B4		0	00	
181	B5		0	00	
182	B6		0	00	
183	B7		0	00	
184	B8		0	00	
185	В9		0	00	
186	ВА		0	00	
187	BB		0	00	
188	BC		0	00	
189	BD		0	00	
190	BE		0	00	
191	BF		0	00	
192	C0		0	00	
193	C1		0	00	
194	C2		0	00	
195	C3		0	00	
196	C4		0	00	
197	C5		0	00	
198	C6		0	00	
199	C7		0	00	
200	C8		()	UU	
200 201	C8 C9		0	00 00	

OFF	SET	DEFINITION	SPEC	VALUE
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)
203	СВ	(98h-FFh is reserved. Default value is 0.)	0	00
204	CC		0	00
205	CD		0	00
206	CE		0	00
207	CF		0	00
208	D0		0	00
209	D1		0	00
210	D2		0	00
211	D3		0	00
212	D4		0	00
213	D5		0	00
214	D6		0	00
215	D7		0	00
216	D8		0	00
217	D9		0	00
218	DA		0	00
219	DB DC		0	00 00
220 221	DD		0	00
222	DE		0	00
223	DF		0	00
224	E0		0	00
225	E1		0	00
226	E2		0	00
227	E3		0	00
228	E4		0	00
229	E5		0	00
230	E6		0	00
231	E7		0	00
232	E8		0	00
233	E9		0	00
234	EA		0	00
235	EB		0	00
236 237	EC ED		0	00
237	EE		0	00 00
239	EF		0	00
240	F0		0	00
241	F1		0	00
242	F2		0	00
243	F3		0	00
244	F4		0	00
265	F5		0	00
246	F6		0	00
247	F7		0	00
248	F8		0	00
249	F9		0	00
250	FA		0	00
251	FB		0	00
252	FC		0	00
253 254	FD FE		0	00 00
255	FF		0	00
200	I ''		J	00



The CSU800AP series is compliant with the industry standard PMBusTM protocol for monitoring and control of the power supply via the I^2C interface port.

CSU800AP Series PMBus™ General Instructions

Equipment Setup

The following is typical I²C communication setup:

I²C Reading Accuracy

Output Load	Input Voltage	Input Current	Input Power	Output Voltage	Output Current	Output Power	Temperature
20% to 30%	±3%	±3%	±2%	±3%	±3%	±3%	±3°C
30% to Full load	±2%	±2%	±2%	±2%	±2%	±2%	±3°C

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
00h	PAGE	00	R	1	Hex	Valid input: 00h
01h	OPERATION	80	R/W	1	Bitmapped	Used to turn the unit ON/OFF in conjunction with the input PSON pin.
	b7:6	10				00 - Immediate turn OFF (No sequencing) 01 - Soft turn OFF (With sequencing) 10 - PSU ON
	b5:4	00				Reserved
	b3:2	00				Reserved
	b1:0	00				Reserved
02h	ON_OFF_CONFIG	1D	R/W	1	Bitmapped	The ON_OFF_CONFIG command configures the combination of CONTROL pin input and serial bus commands needed to turn the unit on and off.
03h	CLEAR_FAULTS	00	S		N/A	Send byte w/PEC
05h	PAGE_PLUS_WRITE		BW			Used with STATUS_INPUT, STATUS_TEMPERATURE, STATUS_IOUT
06h	PAGE_PLUS_READ		BR/BW			Used with STATUS_INPUT, STATUS_TEMPERATURE, STATUS_IOUT, STATUS_WORD
19h	CAPABILITY	90	R	1	Bitmapped	Provides a way for the hosts system to determine some key capabilities of a PMBus TM device.
	b7 - Packet Error Checking	1				0 - PEC not supported 1 - PEC supported
	b6:5 - Maximum Bus Speed	00				00 - Maximum supported bus speed, 100 KHz 01 - Maximum supported bus speed, 400 KHz
	b4 - SMBALERT#	1				0 - SMBus Alert Pin not supported 1 - SMBus Alert Pin supported
	b3 - Numeric Format	0				0 - Linear11, Ulinear16, Slinear16, or Direct 1 - IEEE half precision floating point format
	b2 - AVSBus	0				0 - AVSBus not supported 1 - AVSBus supported
	b1:0	00				Reserved
1Ah	QUERY	-	BR/BW		N/A	Used to determine if the PSU supports a specific command; It should return the proper information about any commands listed.

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
1Bh	SMBALERT_MASK	-	BR/BW		N/A	Default masks per Intel spec: Page 00: STATUS_VOUT = FFh STATUS_IOUT = FFh STATUS_INPUT = FFh STATUS_TEMP = FFh STATUS_CML = FFh Page 01: STATUS_VOUT = FFh STATUS_IOUT = DFh STATUS_IOUT = DFh STATUS_INPUT = EFh STATUS_INPUT = EFh STATUS_TEMP = BFh STATUS_CML = FFh Non-paged: STATUS_FANS_1_2 = FFh
20h	VOUT_MODE	17	R	1	Bitmapped	Specifies the mode and parameters of output voltage related data formats.
30h	COEFFICIENTS	1	BR/BW	5	Hex	Use to retrieve the m, b and R coefficients, needed for DIRECT data format.
	byte 5	00				R byte
	byte 4:3	0000				b low byte, b high byte
	byte 2:1	0001				m low byte, m high byte
3Ah	FAN_CONFIG_1_2	90	R	1	Bitmapped	
	b7	1				0 - No fan is installed in position 1 1 - Fan is installed in position 1
	b6	0				0 - Fan is commanded in duty cycle 1 - Fan is commanded in RPM
	b5:4	01				00 - 1 pulse per revolution 01 - 2 pulses per revolution 10 - 3 pulses per revolution 11 - 4 pulses per revolution
	b3:0	0000				Reserved
3Bh	FAN_COMMAND_1	0000	R/W	2	Linear	Adjusts the operation of the fans. The device may override the command, if it requires higher value, to maintain proper device temperature. Duty cycle control - Commands speeds from 0 to 100%
4Ah	IOUT_OC_WARN_LIMIT	EA4C	R/W	2	Linear	Sets the over current warning threshold in Amps. (73.50 A)
51h	OT_WARN_LIMIT	0055	R/W	2	Linear	Secondary ambient temperature warning threshold, in degree C. Operating limit (85 degC)

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
79h	STATUS_WORD	-	R	2	Bitmapped	Summary of units fault and warning status.
	b15 - VOUT					An output voltage fault or warning has occurred.
	b14 - IOUT					An output current or power fault or warning has occurred.
	b13 - INPUT					An input voltage, current or power fault or warning as occurred.
	b11 - POWER_GOOD#					The POWER_GOOD signal is deasserted.
	b10 - FANS					A fan or airflow fault or warning has occurred.
	b7 - BUSY					A fault was declared because the device was busy and unable to respond.
	b6 - OFF					Unit is OFF.
	b5 - VOUT_OV_FAULT					Output over-voltage fault has occurred.
	b4 - IOUT_OC_FAULT					Output over-current fault has occurred.
	b3 - VIN_UV_FAULT					An input under-voltage fault has occurred.
	b2 - TEMPERATURE					A temperature fault or warning has occurred.
	b1 - CML					A communication, memory or logic fault has occurred.
	b0 - NONE OF THE ABOVE					
7Ah	STATUS_VOUT	-	R	1	Bitmapped	
	b7 - VOUT Overvoltage Fault					VOUT Overvoltage Fault
	b4 - VOUT Under-voltage Fault					VOUT Under-voltage Fault
7Bh	STATUS_IOUT	-	R	1	Bitmapped	
	b7 - IOUT Overcurrent Fault					IOUT Overcurrent Fault
	b5 - IOUT Overcurrent Warning					IOUT Overcurrent Warning
	b1 - POUT_OP_FAULT					POUT_OP_FAULT
	b0 - POUT_OP_WARNING					POUT_OP_WARNING
7Ch	STATUS_INPUT	-	R	1	Bitmapped	Input related faults and warnings
	b5 - VIN_UV_WARNING					VIN Under-voltage Warning
	b4 - VIN_UV_FAULT					VIN Under-voltage Fault
	b3 - Unit Off for Low Input Voltage					Unit is OFF for insufficient input voltage.
	b1 - IIN_OC_WARNING					IIN Overcurrent Warning
	b0 - PIN_OP_WARNING					PIN Overpower Warning
7Dh	STATUS_TEMPERATURE	-	R	1	Bitmapped	Temperature related faults and warnings
	b7 - Over temperature Fault					Over Temperature Fault
	b6 - Over temperature Warning					Over Temperature Warning

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
7Eh	STATUS_CML	-	R	1	Bitmapped	Communications, logic and memory
	b7 - Invalid_CMD					Invalid or unsupported command received
	b6 - Invalid_DATA					Invalid or unsupported data received
	b5 - PEC					Packet error check failed
80h	STATUS_MFR_SPECIFIC	01	R	1		
81h	STATUS_FANS_1_2	00	R	1	Bitmapped	
	b7 - Fan1 Fault					Fan1 fault
	b5 - Fan1 Warning					Fan1 warning
	b3 - Fan1 Speed Overridden					Fan1 speed overridden
86h	READ_EIN		BR	6	Direct	Returns the accumulated input power over time.
87h	READ_EOUT		BR	6	Direct	Returns the accumulated output power over time.
88h	READ_VIN		R	2	Linear	Returns input voltage in Volts AC.
89h	READ_IIN		R	2	Linear	Returns input current in Amperes.
8Bh	READ_VOUT		R	2	Linear	Returns the actual, measured voltage in Volts.
8Ch	READ_IOUT		R	2	Linear	Returns the output current in Amperes.
8Dh	READ_TEMPERATURE_1 (Ambient)		R	2	Linear	Returns the ambient temperature in degree Celsius.
8Eh	READ_TEMPERATURE_2 (Hot Spot)		R	2	Linear	Returns the hot pot temperature in degree Celsius.
8Fh	READ_TEMPERATURE_3 (Pri-Spot)		R	2	Linear	
90h	READ_FAN_SPEED_1		R	2	Linear	Speed of fan 1
96h	READ_POUT		R	2	Linear	Returns the output power in Watts.
97h	READ_PIN		R	2	Linear	Returns the input power in Watts.
98h	PMBUS_REVISION	22	R	1	Bitmapped	Reads the PMBus revision number.
	b7:4	0010				Part 1 Revision 0000 - Revision 1.0 0001 - Revision 1.1 0010 - Revision 1.2
	b3:0	0010				Part 2 Revision 0000 - Revision 1.0 0001 - Revision 1.1 0010 - Revision 1.2
99h	MFR_ID	ARTESYN#### #### (0x41 52 54 45 53 59 4E 23 23 23 23 23 23 23 23)	BR	15	ASCII	Abbrev or symbol of manufacturers name, ASCII format.
9Ah	MFR_MODEL	CSU800AP- 3##### (0x43 53 55 38 30 30 41 50 2D 33 23 23 23 23 23)	BR	15	ASCII	Manufacturers model number, ASCII format.

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
9Bh	MFR_REVISION	NA	BR	6	ASCII	1st byte and 4th byte: 0x00. 2nd and 3rd byte: Secondary major and minor revision. 5th and 6th byre: Primary major and minor revision.
9Ch	MFR_LOCATION	LUODING (0x4C 55 4F 44 49 4E 47)	BR	7	ASCII	Manufacturers facility, ASCII format.
9Eh	MFR_SERIAL	"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	BR	15	ASCII	Unit serial number, ASCII format.
9Fh	APP_PROFILE_SUPPORT	3705	R	2		
A6h	MFR_IOUT_MAX	EA16	R	2	Linear	Maximum output current (66.7 A)
A7h	MFR_POUT_MAX	0320	R	2	Linear	Maximum output power (800 W)
C0h	MFR_MAX_TEMP_1 (Ambient)	EA30	R	2	Linear	Maximum ambient temperature (70 degC)
C1h	MFR_MAX_TEMP_2 (Hot Spot)	EA58	R	2	Linear	Maximum hot spot temperature (95 degC)
D0h	MFR_COLD_REDUNDANCY _CONFIG	00	R/W	1	Hex	00 - Normal 01 - Active 02 - Cold Standby 1 03 - Cold Standby 2 04 - Cold Standby 3 05 - Always Cold Standby
DCh	MFR_BLACKBOX	-	BR	238		
DDh	MFR_REAL_TIME_BLACK_B OX	-	BR/BW	4		
DEh	MFR_SYSTEM_BLACK_BOX	-	BR/BW	40		
DFh	MFR_BLACKBOX_CONFIG	-	R/W	-		
E0h	MFR_CLEAR_BLACKBOX	-	S	-		
F6h	Internal command					
F8h	Internal command					
F9h	Internal command					
FAh	Internal command					
FBh	Internal command	_				

The CSU800AP Series Firmware Update Command List:

The power supply uses the following commands during the boatload process.

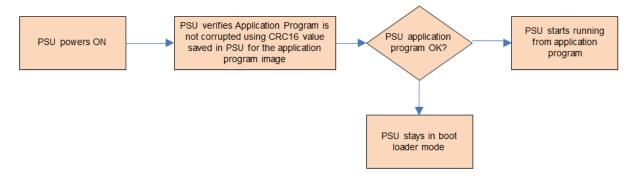
Command Code	Command Name	Default Value	Access Type	Data Bytes	Description
D4h	MFR_HW_COMPATIBILITY	-	R	-	This is a COMPATIBILITY value used to tell if there are any changes in the FW that create an incompatibility with the FW. This value only changes when the PSU HW is changed creating an incompatibility with older versions of FW.
D5h	MFR_FWUPLOAD_CAPABIL ITY	-	R	-	The system can read the power supply's FW upload mode capability using this command. For any given power supply, more than one FW upload mode may be supported. The supported FW upload mode(s) must support updating all available FW in the power supply. This power supply supports FW uploading in standby mode only. Bit 0: "1" FW uploading in standby mode only All other bits configurations are not supported.
D6h	MFR_FWUPLOAD_MODE	-	R/W	-	Writing a "1" puts the power supply into firmware upload mode and gets it ready to receive the first image block via the MFR_FW_UPLOAD command. The system can use this command at any time to restart sending the FW image. Writing a "0" puts the power supply back into normal operating mode. Writing a "1" restart. This command will put the PSU into standby mode if the PSU supports FW update in standby mode only. If the power supply image passed to the PSU is corrupt the power supply will stay in firmware upload mode even if the system requested the PSU to exit the FW upload mode. Value: 0 = Exit firmware upload mode 1 = Firmware upload mode
D7h	MFR_FWUPLOAD	-	BW	-	Command used to send each block of the FW image.
D8h	MFR_FWUPLOAD_STATUS	-	R	2	At any time during or after the firmware image upload the system can read this command to determine status of the firmware upload process. All bits get reset to "0" when the power supply enters FW upload mode. Bit 0: "1" full image received Bit 1: "1" full image not received. This remains asserted until the full image is received Bit 2: "1" bad or corrupt image received Bit 3: For future use Bit 4: "1" FW image is not supported and not received Bit 5-15: Reserved

PMBus™ SPECIFICATIONS

The CSU800AP Series Firmware Update Command List:

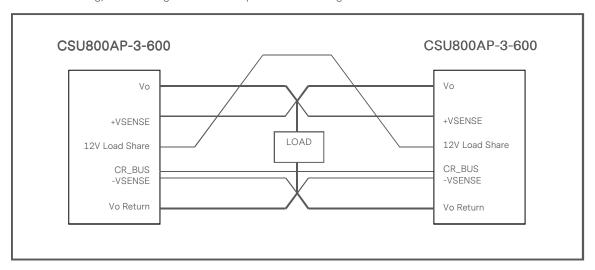
The power supply uses the following commands during the boatload process.

Command Code	Command Name	Default Value	Access Type	Data Bytes	Description
D9h	MFR_FW_REVISION	NA	BR	3	Describes revisions of the FW. Block Read with PEC (3 bytes) Byte 0: 0-255 minor revision, secondary Byte 1: 0-255 minor revision, primary Byte 3: 0-255 Bit 7: "1" down grading of PSU FW has to be avoided; "0" no restriction in downgrading the PSU FW. Bit 0-6: Major revision


Note: While the PSU FW image is being updated the PSU will blink the green LED at a 2 Hz rate.

Firmware Update Process IMPORTANT! • PSU may be in standby mode or ON mode during FW by may be in standary most of Standary most or update process if the FW update process is interrupted at any point during the process; the PSU must always be able to return to the boot loader code. The PSU must always check that the application program is not corrupted before starting to run from the application BMC uses these commands to determine of FW needs updating: MFR, FW, REVISION MFR, MODEL MFR, FW, UPLOAD_MODE MFR, HW, COMPATIBILITY MFR, FW, UPLOAD_CAPABILITY MFR, FW, UPLOAD_CAPABILITY BMC determines PSU FW needs updating? PSU stays in application program mode not corrupted before starting to run from the application program During the FW upload process the PSU must always respond to any communication on the bus; acknowledging its address and the supporting commands without holding the bus. For unsupported boot loader commands the PSU may respond with Not Acknowledge or 00h. BMC must configure correct addresses into ME at BMC startup to avoid bad PSU address config if AC power is lost or BMC is reset while the PSU update is in progress BMC resets retry counter BMC put PSU into Boot Load mode ends 0x01 to MFR_FWUPLOAD_MODE Increment retry count EXIT BMC reads MFR_FWUPLOAD_ MODE = 0x01? BMC reads FW image header in BMC for block size and delay time PSU erases part of application memory & write the 1st image block BMC sets "config error" offset of PSU status sensor Write time delay BMC sends MFR_FWUPLOAD & next^t block of image BMC reads MFR_FW_UPLOAD MODE = 0 Write time delay (optional) BMC reads MFR_FW_UPLOAD_STATUS optional) Block received OK? BMC writes 00h to MFR_FW_UPLOAD_MODE Last data block? Full image receive successfully? BMC writes 00h to MFR_FW_UPLOAD_MODE

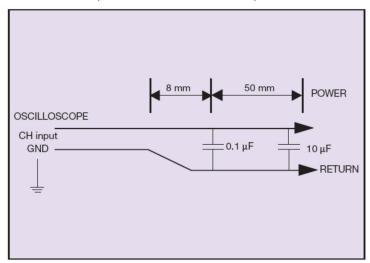
PSU Flow During Powering ON



APPLICATION NOTES

Current Sharing

The CSU800AP series power supply main output V_0 is equipped with current sharing capability. This will allow up to 4 power supplies to be connected in parallel for higher power application. Current share accuracy is typically 5% when the load is larger than 20%. When supplying light loads between 10% and 20% of its rated load, the power supplies will share within 10% accuracy. Below 10% total loading, there is no guarantee of output current sharing.



APPLICATION NOTES

Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the CSU800AP series power supply. When measuring output ripple and noise, a scope jack in parallel with a 0.1 uF ceramic chip capacitor, and a 10 uF tantalum capacitor will be used. Oscilloscope can be set to 20 MHz bandwidth for this measurement.

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	12.29.2020	First Issue	C. Liu
1.1	02.24.2021	Update the back cover	C. Liu
1.2	05.28.2021	Add the VIN_GOOD characteristics in the performance curve	A. Zhang
1.3	09.07.2021	Update PWOK signal for customer system side	C. Liu
1.4	01.16.2025	Add conducted immunity information to the EMC table.	C. Liu
1.5	05.15.2025	Correct 51h data format to linear	C. Liu

For international contact information, visit advancedenergy.com.

powersales@aei.com(Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2025 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.